Equivalence groupoids of classes of nonlinear second-order evolution equations
DOI:
https://doi.org/10.15407/dopovidi2019.05.003Keywords:
admissible transformations, equivalence group, equivalence groupoid, evolution equations, reaction– diffusion–convection equationsAbstract
We study transformational properties of the general class of (1+1)-dimensional nonlinear second-order evolution equations. The chain of nested normalized subclasses of this class is constructed. The equivalence groupoids of the respective normalized subclasses are found. For two subclasses that are of interest for applications, but not normalized, the equivalence groups are derived.
Downloads
References
Popovych, R. O. (2006). Classification of admissible transformations of differential equations. Collection of Works of Institute of Mathematics, 3, No. 2, pp. 239-254.
Popovych, R. O., Kunzinger, M. & Eshraghi, H. (2010). Admissible transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl. Math, 109, pp. 315-359. doi: https://doi.org/10.1007/s10440-008-9321-4
Popovych, R. O. & Bihlo, A. (2012). Symmetry preserving parametrization schemes. J. Math. Phys., 53, No. 7, 073102, 36 p. doi: https://doi.org/10.1063/1.4734344
Ovsiannikov, L. V. (1978). Group analysis of differential equations. Moscow: Nauka (in Russian).
Vaneeva, O. O., Popovych, R. O. & Sophocleous, C. (2014). Equivalence transformations in the study of integrability. Phys. Scr., 89, No. 3, 038003, 9 p. doi: https://doi.org/10.1088/0031-8949/89/03/038003
Vaneeva, О. О. & Zhalij, O. Yu. (2014). Group analysis of a class of reaction-diffusion equations with variable coefficients. Dopov. Nac. akad. nauk. Ukr., No. 10, pp. 12-20 (in Ukrainian). doi: https://doi.org/10.15407/dopovidi2014.10.012
Vaneeva, O., Boyko, V., Zhalij, A. & Sophocleous, C. (2019). Classification of reduction operators and exact solutions of variable coefficient Newell–Whitehead–Segel equations. J. Math. Anal. Appl., 474, No. 1, pp. 264-275. doi: https://doi.org/10.1016/j.jmaa.2019.01.044
Vaneeva, O. & Pošta, S. (2017). Equivalence groupoid of a class of variable coefficient Korteweg–de Vries equations. J. Math. Phys., 58, No. 10, 101504, 12 p. doi: https://doi.org/10.1063/1.5004973
Kingston, J. G. (1991). On point transformations of evolution equations. J. Phys. A: Math. Gen., 24, No. 14, pp. L769-L774. doi: https://doi.org/10.1088/0305-4470/24/14/003
Kingston, J. G. & Sophocleous, C. (1998). On form-preserving point transformations of partial differential equations. J. Phys. A: Math. Gen., 31, No. 6, pp. 1597-1619. doi: https://doi.org/10.1088/0305-4470/31/6/010
Popovych, R. O. & Samoilenko, A. M. (2008). Local conservation laws of second-order evolution equations. J. Phys. A: Math. Theor., 41, No. 36, 362002, 11 p. doi: https://doi.org/10.1088/1751-8113/41/36/362002
Popovych, R. O. & Ivanova, N. M. (2004). New results on group classification of nonlinear diffusion-convection equations. J. Phys. A: Math. Gen., 37, No. 30, pp. 7547-7565. doi: https://doi.org/10.1088/0305-4470/37/30/011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.