On ideals and contraideals in Leibniz algebras

Authors

  • L.A. Kurdachenko Oles Honchar Dnipro National University
  • I.Ya. Subbotin National University, Los Angeles, USA
  • V.S. Yashchuk Oles Honchar Dnipro National University

DOI:

https://doi.org/10.15407/dopovidi2020.01.011

Keywords:

contraideal, extraspecial Leibniz algebra, factoralgebra, ideal, Leibniz algebra, Leibniz kernel, Lie algebra, quasisimple Leibniz algebrà, subalgebra

Abstract

A subalgebra S of a Leibniz algebra L is called a contraideal, if an ideal, generated by S coincides with L. We study the Leibniz algebras, whose subalgebras are either an ideal or a contraideal. Let L be an algebra over a field F with the binary operations + and [ , ]. Then L is called a Leibniz algebra (more precisely, a left Leibniz algebra), if it satisfies the following identity: [[a, b], c] = [a, [b, c]] – [b, [a, c]] for all a, b, c ∈ L. We will also use another form of this identity: [a, [b, c]] = [[a, b], c] + [b, [a, c]]. Leibniz algebras are generalizations of Lie algebras. As usual, a subspace A of a Leibniz algebra L is called a subalgebra, if [x,y] ∈ A for all elements x, y Î A. A subalgebra A is called a left (respectively right) ideal of L, if [y,x] ∈ A (respectively, [x,y] ∈ A) for every x ∈ A, y ∈ L. In other words, if A is a left (respectively, right) ideal, then [L, A] ≤ A (respectively, [A, L] ≤ A). A subalgebra A of L is called an ideal of L (more precisely, a twosided ideal), if it is both a left ideal and a right ideal, that is, [y, x], [x, y] ∈ A for every x ∈ A, y ∈ L. A subalgebra A of L is called an contraideal of L, if AL = L. The theory of Leibniz algebras has been developed quite intensively, but very uneven. However, there are problems natural for any algebraic structure that were not previously considered for Leibniz algebras. We have received a complete description of the Leibniz algebras, which are not Lie algebras, whose subalgebras are an ideal or a contraideal. We also obtain a description of Lie algebras, whose subalgebras are ideals or contraideals up to simple Lie algebras.

Downloads

Download data is not yet available.

References

Bloh, A. M. (1965). On a generalization of the concept of Lie algebra. Dokl. AN SSSR, 165, No. 3, pp. 471473.

Bloh, A. M. (1967). Cartan—Eilenberg homology theory for a generalized class of Lie algebras. Dokl. AN SSSR, 175, No. 8, pp. 824826.

Bloh, A. M. (1971). A certain generalization of the concept of Lie algebra. Algebra and number theory. Uchenye Zapiski Moskow. Gos. Pedagog.Inst., 375, pp. 920 (in Russian).

Loday, J.L. (1993). Une version non commutative des alg bres de Lie: les alg bres de Leibniz. Enseign. Math., 39, pp. 269293.

Loday, J.L. (1998). Cyclic homology. Grundlehren der Mathematischen Wissenschaften, Vol. 301, 2nd ed., Berlin: Springer. Doi: https://doi.org/10.1007/978-3-662-11389-9

Butterfield, J. & Pagonis, C. (1999). From Physics to Philosophy. Cambridge: Cambridge Univ. Press. Doi: https://doi.org/10.1017/CBO9780511597947

Dobrev, V. (Ed.). (2013). Lie Theory and its applications in physic. IX International workshop, Vol. 36, Springer: Tokyo. Doi: https://doi.org/10.1007/978-4-431-54270-4

Chupordya, V. A., Kurdachenko, L. A. & Subbotin, I. Ya. (2017). On some “minimal” Leibniz algebras. J. Algebra Appl., 16, No. 5, 1750082, 16 p. Doi: https://doi.org/10.1142/S0219498817500827

Kurdachenko, L. A., Semko, N. N. & Subbotin, I. Ya. (2017). The Leibniz algebras whose subalgebras are ideals. Open Math., 15, pp. 92100. Doi: https://doi.org/10.1515/math-2017-0010

Downloads

Published

07.03.2023

How to Cite

Kurdachenko, L. ., Subbotin, I. ., & Yashchuk, V. . (2023). On ideals and contraideals in Leibniz algebras . Reports of the National Academy of Sciences of Ukraine, (1), 11–15. https://doi.org/10.15407/dopovidi2020.01.011