The non-Markovian Fokker–Planck kinetic equation for a system of hard spheres
DOI:
https://doi.org/10.15407/dopovidi2014.12.029Keywords:
Fokker–Planck kinetic equation, system of hard spheresAbstract
For a many-particle system composed of a tracer hard sphere and an environment of hard spheres with elastic collisions, the generalized Fokker–Planck kinetic equation is justified. The scaling approximations of a solution of the constructed kinetic equation are considered.
Downloads
References
Krulov M. M., Bogoliybov M. M. Zap. kaf. math. fizuku In-tu budivelnoi mekhaniku AN UkrSSR, 1939, 4: 5–80 (in Ukrainian).
Bogoliybov N. N.. Fizika elementarnuh chastic i atomnogo iadra, 1978, 9, No. 4: 501–579 (in Russian).
Fokker A. D. Ann. Phys. 1914, 43: 810–820. https://doi.org/10.1002/andp.19143480507
Planck M. Sitzungsber. Koniglich Preussisch. Akad. Wiss. 1917: 324–341.
Erdos L. Ann. Henri Poincar´e, 2007, 8: 621–685. https://doi.org/10.1007/s00023-006-0318-0
Gallagher I., Saint-Raymond L., Texier B. From Newton to Boltzmann: Hard Spheres and Short-range Potentials. In: Zurich Lectures in Advanced Mathematics. Zurich: EMS Publ. House, 2014. https://doi.org/10.4171/129
Zagorodny A. G., Weiland J. Physica of Plasmas., 1999, 6: 2359–2372. https://doi.org/10.1063/1.873507
Zagorodny A. G. Theor. Math. Phys., 2009, 180, No 2: 1101–1112. https://doi.org/10.1007/s11232-009-0103-6
Gerasimenko V. I. Proc. Inst. Math. NAS of Ukraine, 2013, 10, No 2: 71–95.
Cercignani C., Gerasimenko V. I., Petrina D. Ya. Many-particle dynamics and kinetic equations, Dordrecht: Kluwer, 1997. https://doi.org/10.1007/978-94-011-5558-8
Gapiak I. V., Gerasumenko V. I. Dopov. Nac. akad. nauk Ukraine, 2012, No 3: 7–13 (in Ukrainian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.