The design of active site inhibitors of Mycobacterium tuberculosis tyrosyl-tRNA synthetase based on SB-219383 inhibitor
DOI:
https://doi.org/10.15407/dopovidi2014.10.167Keywords:
inhibitors, Mycobacterium tuberculosis, tyrosyl-tRNA synthetaseAbstract
Mycobacterium tuberculosis tyrosyl-tRNA synthetase (MtTyrRS) is one of the key enzymes at the pre-ribosomal protein synthesis step and its inhibition should significantly suppress the growth of pathogenic bacteria in the host body. MtTyrRS and human TyrRS are not able to cross-recognition and aminoacylation of cognate tRNATyr, therefore the specific inhibitors of MtTyrRS should not be toxic to human body. Interactions between the inhibitor and the KMSKS-like catalytic loop of MtTyrRS should significantly increase its affinity to the enzyme. We have performed the design of new inhibitors of MtTyrRS based on the structure of the known SB-219383 inhibitor. We modified the inhibitor in order to allow its interactions with the catalytic loop of MtTyrRS. The 100-ns dynamics of MtTyrRS reveals that the proposed inhibitors interact with the catalytic loop during the simulation.
Downloads
References
Wang S. F., Yin Y., Qiao F. et al. Bioorg. Med. Chem., 2014, 22, No 8: 2409–2415. https://doi.org/10.1016/j.bmc.2014.03.004
Odynets K. O., Kornelyuk O. I. Ukr. biokhim. zhurn., 2008, No 5: 36–49 (in Ukrainian).
Datt M., Sharma A. J. Struct. Funct. Genom., 2014, 15, No 2: 45–61. https://doi.org/10.1007/s10969-014-9178-x
Bonnefond L., Gieg´e R., Rudinger-Thirion J. Biochimie, 2005, 87, No 9–10: 873–883. https://doi.org/10.1016/j.biochi.2005.03.008
Mikuliak V. V., Korneliuk O. I. Dopov. Nac. akad. nauk Ukr., 2012, No 5: 158–162 (in Ukrainian).
Bonnefond L., Frugier M., Touz´e E. et al. Structure, 2007, 15, No 11: 1505–1516. https://doi.org/10.1016/j.str.2007.09.018
Xiao Z. P., Ma T. W., Liao M. L. et al. Eur. J. Med. Chem., 2011, 46, No 10: 4904–4914. https://doi.org/10.1016/j.ejmech.2011.07.047
Stefanska A. L., Coates N. J., Mensah L. M. et al. J. Antibiot. (Tokyo), 2000, 53, No 4: 345–350. https://doi.org/10.7164/antibiotics.53.345
Houge-Frydrych C. S., Readshaw S. A., Bell D. J. J. Antibiot. (Tokyo), 2000, 53, No 4: 351–356. https://doi.org/10.7164/antibiotics.53.351
Jarvest R. L., Berge J. M., Brown P. et al. Bioorg. Med. Chem. Lett., 2001, 11, No 5: 715–718. https://doi.org/10.1016/S0960-894X(01)00040-3
Xiao Z. P., Ouyang H., Wang X. D. et al. Bioorg. Med. Chem., 2011, 19, No 13: 3884–3891. https://doi.org/10.1016/j.bmc.2011.05.042
Austin J., First E. J. Biol. Chem., 2002, 277, No 32: 28394–28399. https://doi.org/10.1074/jbc.M204404200
Wang J., Wolf R. M., Caldwell J. W. et al. J. Comput. Chem., 2004, 25, No 9: 1157–1174.https://doi.org/10.1002/jcc.20035
Hess B., Kutzner C., Van Der Spoel D., Lindahl E. J. Chem. Theory Comput., 2008, 4, No 3: 435–447. https://doi.org/10.1021/ct700301q
Hornak V., Abel R., Okur O. et al. Proteins, 2006, 65, No 3: 712–725. https://doi.org/10.1002/prot.21123
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.