Analysis of disordered regions of AIMR1/p43 protein from human multisynthetase complex with bioinformatics methods

Authors

  • T. S. Limanska Institute of High Technology, Taras Shevchenko National University of Kiev
  • A.Yu. Nyporko Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kiev
  • A. I. Kornelyuk Institute of High Technology, Taras Shevchenko National University of Kiev

DOI:

https://doi.org/10.15407/dopovidi2016.06.103

Keywords:

AIMR1/p43, bioinformatics, disordered regions, secondary structure

Abstract

Features of the secondary structure and locations of the disordered regions in the structure of AIMRI protein — component of the human multisynthetase complex are investigated with several in silico approaches. It is revealed that the longest part of the protein disclosed to fold into a disordered structure is located from 103 to 148 amino acid residue. Interestingly, within this region (from about 121 to residue 140), the presence of α-helix is also possible. This seeming contradiction is simply explained by the saturation of the appropriate region by both lysine residues (marker of disordered regions of proteins) and glutamate residues (typical marker of α-helical elements). With high probability, we can assume that this spiral is metastable, i. e., moving to a disordered state and back due to natural fluctuations of the protein molecule.

Downloads

Download data is not yet available.

References

Oldfield C. J., Dunker A. K. Annu. Rev Biochem., 2014, 83: 553–584. https://doi.org/10.1146/annurev-biochem-072711-164947

Odynets K. A., Kornelyuk A. I. Biopolym. Cell., 2005, 21: 446–453. https://doi.org/10.7124/bc.000709

Kim J. H., Han J. M., Kim S. Top. Curr. Chem., 2014, 344: 119–144. https://doi.org/10.1007/128_2013_479

Renault L., Kerjan P., Pasqualato S. et al. EMBO J., 2001, 20: 570–578. https://doi.org/10.1093/emboj/20.3.570

Berman H. M., Westbrook J., Feng Z. et al. Nucleic Acids Res., 2000, 28: 235–242. https://doi.org/10.1093/nar/28.1.235

Fu Y., Kim Y., Jin K. S. et al. Proc. Natl. Acad. Sci. USA, 2014, 111: 15 084–15 089.

The UniProt Consortium. Nucleic Acids Res., 2014, 42: D191–D198. https://doi.org/10.1093/nar/gkt1140

Buchan D. W. A., Minneci F., Nugent T. C. O. et al. Nucleic Acids Res., 2013, 41: W340–W348. https://doi.org/10.1093/nar/gkt381

Yachdav G., Kloppmann E., Kajan L. et al. Nucleic Acids Res., 2014, 42, Web Server issue: W337–W343.

Ishida T., Kinoshita K. Nucleic Acids Res., 2007, 35 (Web Server issue): W460–W464.

Linding R., Russell R. B., Neduva V., Gibson T. J. Nucleic Acid Res., 2003, 31: 3701–3708. https://doi.org/10.1093/nar/gkg519

Prilusky J., Felder C. E., Zeev-Ben-Mordehai T. et al. Bioinformatics, 2005, 21: 3435–3438. https://doi.org/10.1093/bioinformatics/bti537

Linding R., Jensen L. J., Diella F. et al. Structure, 2003, 11: 1453–1459. https://doi.org/10.1016/j.str.2003.10.002

Ward J. J., Sodhi J. S., McGuffin L. J. et al. J. Mol. Biol., 2004, 337: 635–645. https://doi.org/10.1016/j.jmb.2004.02.002

Sickmeier M., Hamilton J. A., LeGall T. et al. Bioinformatics, 2005, 21: 137–140. https://doi.org/10.1093/bioinformatics/bth476

Published

03.11.2024

How to Cite

Limanska, T. S., Nyporko, A., & Kornelyuk, A. I. (2024). Analysis of disordered regions of AIMR1/p43 protein from human multisynthetase complex with bioinformatics methods . Reports of the National Academy of Sciences of Ukraine, (6), 103–111. https://doi.org/10.15407/dopovidi2016.06.103