Group analysis of a class of reaction-diffusion equations with variable coefficients
DOI:
https://doi.org/10.15407/dopovidi2014.10.012Keywords:
reaction-diffusion equations, variable coefficientsAbstract
The group analysis of (1+1)-dimensional quasilinear reaction-diffusion equations with variable coefficients is carried out. An equivalence group of the whole class and a wider equivalence group that corresponds to the subclass with exponential nonlinearity are found. Lie symmetries are classified up to the derived equivalence transformations. It is shown that the dimensions of maximal Lie invariance algebras of the equations under study are not greater than four.
Downloads
References
Fleming W. H. J. Math. Biol., 1975, 2, No 3: 219–233. https://doi.org/10.1007/BF00277151
Hill J. M., Marchant T. R. Appl. Math. Model., 1996, 20, No 1: 3–15. https://doi.org/10.1016/0307-904X(95)00107-U
Olver P. Applications of Lie groups to differential equations, Moscow: Mir, 1989 (in Russian).
Ovsyannikov L. V. Group analysis of differential equations, Moscow: Nauka, 1978 (in Russian).
Dorodnitsyn V. A. Group properties and invariant solutions of nonlinear heat equations with a source or drain, Moscow, 1979. (Prepr. AN USSR In-t prikl. matematiki No 57).
Bradshaw-Hajek B. Reaction-diffusion equations for population genetics. PhD thesis, Wollongong: University of Wollongong, 2004.
Ivanova N. M. On Lie symmetries of a class of reaction-diffusion equations. In: Proc. of the 4th Intern. Workshop “Group Analysis of Differential Equations and Integrable Systems”, Nicosia: University of Cyprus, 2009: 84–86.
Vaneeva O. O., Popovych R. O., Sophocleous C. Acta Appl. Math., 2009, 106, No 1: 1–46. https://doi.org/10.1007/s10440-008-9280-9
Basarab-Horwath P., Lahno V., Zhdanov R. Acta Appl. Math., 2001, 69, No 1: 43–94. https://doi.org/10.1023/A:1012667617936
Meleshko S. V. J. Appl. Math. Mech., 1994, 58, No 4: 629–635. https://doi.org/10.1016/0021-8928(94)90138-4
Ivanova N. M., Popovych R. O., Sophocleous C. Conservation laws of variable coefficient diffusion-convection equations. In: Proc. of 10th Intern. Conf. in Modern Group Analysis, Nicosia: University of Cyprus, 2005: 107–113.
Popovych R. O., Kunzinger M., Eshraghi H. Acta Appl. Math., 2010, 109, No 2: 315–359. https://doi.org/10.1007/s10440-008-9321-4
Popovych R. O., Bihlo A. J. Math. Phys., 2012, 53: 073102. https://doi.org/10.1063/1.4734344
Kingston J. G., Sophocleous C. J. Phys. A: Math. Gen., 1998, 31, No 6: 1597–1619. https://doi.org/10.1088/0305-4470/31/6/010
Popovych R. O., Ivanova N. M. J. Phys. A: Math. Gen., 2004, 37, No 30: 7547–7565. https://doi.org/10.1088/0305-4470/37/30/011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.