Retrospective task for a non-stationary operator of heat conductivity

Authors

  • V.V. Panin
  • F.A. Krivoshey
  • Yu.A. Bogdan

DOI:

https://doi.org/10.15407/dopovidi2014.08.072

Keywords:

heat conductivity, internal combustion engine, non-stationary operator

Abstract

The limit case of a retrospective task of non-stationary heat conductivity (namely, the restoration of the initial distribution of temperatures) is considered. The need for it can arise at expert estimates of the thermal prehistory of an object, for example, an internal combustion engine. The regularization of the solution of a non-correct Volterra integral equation of the first kind for the initial distribution of temperatures by Laplace’s stochastic transformation in the square approximation reduces the first-kind equation to a second-kind equation, whose solution is unique and stable relative to the errors of initial data.

Downloads

References

Lattes R., Lions Zh. Quasi-inversion method and its application, Moscow: Mir, 1970 (in Russian).

Lavrentiev M. M. Dokl. AN USSR, 1959, 127, Iss. 1: 12–15 (in Russian).

Krivoshey F. A. Dopov. Nac. akad. nauk Ukr., 1998, No 12: 108–112 (in Russian).

Lavrentiev M. M., Romanov V. G., Shyshatskiy S. P. Incorrect problems of mathematical physics, Moscow: Nauka, 1980 (in Russian).

Alifanov O. M., Artyukhin E. A, Rumyantsev S. V. Extreme methods for solving ill-posed problems and their applications to inverse problems of heat transfer, Moscow: Nauka, 1988 (in Russian).

Krivoshey F. A. Teoret. osnovy khim. tekhnologii, 1993, 33, No 7: 453–458 (in Russian).

Published

01.03.2025

How to Cite

Panin, V., Krivoshey, F., & Bogdan, Y. (2025). Retrospective task for a non-stationary operator of heat conductivity . Reports of the National Academy of Sciences of Ukraine, (8), 72–76. https://doi.org/10.15407/dopovidi2014.08.072