RECONSTRUCTION OF A MODEL OF A MULTIPROTEIN COMPLEX CRITICAL FOR ATG8 LIPIDATION DURING AUTOPHAGOSOME FORMATION IN PLANTS

Authors

DOI:

https://doi.org/10.15407/dopovidi2025.01.068

Keywords:

autophagy, Arabidopsis thaliana, ATG proteins, molecular dynamics

Abstract

Autophagy represents a fundamental cellular process, whereby molecules and subcellular elements, including nucleic acids, proteins, lipids, and organelles, are eliminated through lysosome-mediated degradation. This process plays a crucial role in maintaining cellular homeostasis, promotes differentiation, supports development and contributes to cell survival.
The research is devoted to the study of the molecular nature of the interaction of proteins of the ATG12- ATG5-ATG16 and ATG8 orthologs of plant and human conjugation systems with subsequent in silico docking for the implementation of future integration into a multimeric complex with the addition of phosphoinositide interacting protein 2 (WIPI2), and their subsequent reproduction with animal orthologs of autophagosome biogenesis mating systems.
A thorough comprehension of both theoretical and practical aspects of modern computing is essential for the development of robust computational methods. The introduction of these methods combined with an in-depth review of the scientific literature provides a solid foundation for the study of protein conformational changes. By creating calculated variations of a known protein structure and providing the appropriate content for reproduction and interpretation of conformational changes, it is possible to identify functional states that align with the specific requirements of a given system. The employment of computer modeling methodologies permits the construction of structural models and the replication of intermolecular interactions. This enables an enhanced evaluation of the prospective interaction between future inhibitors or ligands and the target. The authors utilized in silico modeling to predict and elucidate potential interactions between the components of a multi-protein complex.

Downloads

References

Bassham, D. C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L. J. & Yoshimoto, K. (2006). Autophagy in development and stress responses of plants. Autophagy, 2, No. 1, pp. 2-11. https://doi.org/10.4161/auto.2092

Yagyu, M. & Yoshimoto, K. (2024). New insights into plant autophagy: molecular mechanisms and roles in development and stress responses. J. Exp. Bot., 75, No. 5, pp. 1234-1251. https://doi.org/10.1093/jxb/erad459

Zientara-Rytter, K. & Sirko, A. (2016). To deliver or to degrade — an interplay of the ubiquitin-proteasome system, autophagy and vesicular transport in plants. FEBS J., 283, No. 19, pp. 3534-3555. https://doi.org/10.1111/ febs.13712

Harding, T. M., Morano, K. A., Scott, S. V. & Klionsky, D. J. (1995). Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J. Cell. Biol., 131, No. 3, pp. 591-602. https://doi. org/10.1083/jcb.131.3.591

He, C. & Klionsky, D. J. (2007). Atg9 trafficking in autophagy-related pathways. Autophagy, 3, No. 3, pp. 271- 274. https://doi.org/10.4161/auto.3912

Yang, Z. & Klionsky, D. J. (2009). An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol., 335, pp. 1-32. https://doi.org/10.1007/978-3-642-00302-8_1

Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S. & Ohsumi, Y. (2002). Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol., 129, No. 3, pp. 1181-1193. https://doi.org/10.1104/pp.011024

Ketelaar, T., Voss, C., Dimmock, S. A., Thumm, M. & Hussey, P. J. (2004). Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett., 567, No. 2-3, pp. 302- 306. https://doi.org/10.1016/j.febslet.2004.04.088

Mizushima, N., Yoshimori, T. & Ohsumi, Y. (2011). The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol., 27, pp. 107-132. https://doi.org/10.1146/annurev-cellbio-092910-154005

The UniProt Consortium (2023). UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res., 51, Iss. D1, pp. D523-D531. https://doi.org/10.1093/nar/gkac1052

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, Iss. 17, pp. 3389-3402. https://doi.org/10.1093/nar/25.17.3389

Eargle, J., Wright, D. & Luthey-Schulten, Z. (2006). Multiple Alignment of protein structures and sequences for VMD. Bioinformatics, 22, No. 4, pp. 504-506. https://doi.org/10.1093/bioinformatics/bti825

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wal- lace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, No. 21, pp. 2947-2948. https://doi.org/10.1093/bioinformatics/btm404

Wu, M., Yang, Y., Wang, H. & Xu, Y. (2019). A deep learning method to more accurately recall known lysine acetylation sites. BMC Bioinformatics, 20, No. 1, 49. https://doi.org/10.1186/s12859-019-2632-9

Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J. & von Mering, C. (2021). The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 49, Iss. D1, pp. D605-D612. https://doi.org/10.1093/nar/gkaa1074

Huang, J. & MacKerell, A. D., Jr. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem., 34, No. 25, pp. 2135-2145. https://doi.org/10.1002/jcc.23354

Kast, D. J. & Dominguez, R. (2017). The cytoskeleton-autophagy connection. Curr. Biol., 27, No. 8, pp. R318-R326. https://doi.org/10.1016/j.cub.2017.02.061

Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., Figurnov, M., Cowie, A., Hobbs, N., Kohli, P., Kleywegt, G., Birney, E., Hassabis, D. & Velankar, S. (2022). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res., 50, Iss. D1, pp. D439-D444. https://doi.org/10.1093/nar/ gkab1061

Ye, Y., Tyndall, E. R., Bui, V., Bewley, M. C., Wang, G., Hong, X., Shen, Y., Flanagan, J. M., Wang, H. G. & Tian, F. (2023). Multifaceted membrane interactions of human Atg3 promote LC3-phosphatidylethanolamine conjugation during autophagy. Nat. Commun., 14, 5503. https://doi.org/10.1038/s41467-023-41243-4

Rao, S., Skulsuppaisarn, M., Strong, L. M., Ren, X., Lazarou, M., Hurley, J. H. & Hummer, G. (2024). Three-step docking by WIPI2, ATG16L1, and ATG3 delivers LC3 to the phagophore. Sci. Adv., 10, No. 6, eadj8027. https:// doi.org/10.1126/sciadv.adj8027

Published

27.02.2025

How to Cite

Bulgakov, E., Rayevsky, A., & Blume, Y. B. (2025). RECONSTRUCTION OF A MODEL OF A MULTIPROTEIN COMPLEX CRITICAL FOR ATG8 LIPIDATION DURING AUTOPHAGOSOME FORMATION IN PLANTS. Reports of the National Academy of Sciences of Ukraine, (1), 68–76. https://doi.org/10.15407/dopovidi2025.01.068