RECONSTRUCTION OF A MODEL OF A MULTIPROTEIN COMPLEX CRITICAL FOR ATG8 LIPIDATION DURING AUTOPHAGOSOME FORMATION IN PLANTS
DOI:
https://doi.org/10.15407/dopovidi2025.01.068Keywords:
autophagy, Arabidopsis thaliana, ATG proteins, molecular dynamicsAbstract
Autophagy represents a fundamental cellular process, whereby molecules and subcellular elements, including nucleic acids, proteins, lipids, and organelles, are eliminated through lysosome-mediated degradation. This process plays a crucial role in maintaining cellular homeostasis, promotes differentiation, supports development and contributes to cell survival.
The research is devoted to the study of the molecular nature of the interaction of proteins of the ATG12- ATG5-ATG16 and ATG8 orthologs of plant and human conjugation systems with subsequent in silico docking for the implementation of future integration into a multimeric complex with the addition of phosphoinositide interacting protein 2 (WIPI2), and their subsequent reproduction with animal orthologs of autophagosome biogenesis mating systems.
A thorough comprehension of both theoretical and practical aspects of modern computing is essential for the development of robust computational methods. The introduction of these methods combined with an in-depth review of the scientific literature provides a solid foundation for the study of protein conformational changes. By creating calculated variations of a known protein structure and providing the appropriate content for reproduction and interpretation of conformational changes, it is possible to identify functional states that align with the specific requirements of a given system. The employment of computer modeling methodologies permits the construction of structural models and the replication of intermolecular interactions. This enables an enhanced evaluation of the prospective interaction between future inhibitors or ligands and the target. The authors utilized in silico modeling to predict and elucidate potential interactions between the components of a multi-protein complex.
Downloads
References
Bassham, D. C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L. J. & Yoshimoto, K. (2006). Autophagy in development and stress responses of plants. Autophagy, 2, No. 1, pp. 2-11. https://doi.org/10.4161/auto.2092
Yagyu, M. & Yoshimoto, K. (2024). New insights into plant autophagy: molecular mechanisms and roles in development and stress responses. J. Exp. Bot., 75, No. 5, pp. 1234-1251. https://doi.org/10.1093/jxb/erad459
Zientara-Rytter, K. & Sirko, A. (2016). To deliver or to degrade — an interplay of the ubiquitin-proteasome system, autophagy and vesicular transport in plants. FEBS J., 283, No. 19, pp. 3534-3555. https://doi.org/10.1111/ febs.13712
Harding, T. M., Morano, K. A., Scott, S. V. & Klionsky, D. J. (1995). Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J. Cell. Biol., 131, No. 3, pp. 591-602. https://doi. org/10.1083/jcb.131.3.591
He, C. & Klionsky, D. J. (2007). Atg9 trafficking in autophagy-related pathways. Autophagy, 3, No. 3, pp. 271- 274. https://doi.org/10.4161/auto.3912
Yang, Z. & Klionsky, D. J. (2009). An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol., 335, pp. 1-32. https://doi.org/10.1007/978-3-642-00302-8_1
Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S. & Ohsumi, Y. (2002). Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol., 129, No. 3, pp. 1181-1193. https://doi.org/10.1104/pp.011024
Ketelaar, T., Voss, C., Dimmock, S. A., Thumm, M. & Hussey, P. J. (2004). Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett., 567, No. 2-3, pp. 302- 306. https://doi.org/10.1016/j.febslet.2004.04.088
Mizushima, N., Yoshimori, T. & Ohsumi, Y. (2011). The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol., 27, pp. 107-132. https://doi.org/10.1146/annurev-cellbio-092910-154005
The UniProt Consortium (2023). UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res., 51, Iss. D1, pp. D523-D531. https://doi.org/10.1093/nar/gkac1052
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, Iss. 17, pp. 3389-3402. https://doi.org/10.1093/nar/25.17.3389
Eargle, J., Wright, D. & Luthey-Schulten, Z. (2006). Multiple Alignment of protein structures and sequences for VMD. Bioinformatics, 22, No. 4, pp. 504-506. https://doi.org/10.1093/bioinformatics/bti825
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wal- lace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, No. 21, pp. 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
Wu, M., Yang, Y., Wang, H. & Xu, Y. (2019). A deep learning method to more accurately recall known lysine acetylation sites. BMC Bioinformatics, 20, No. 1, 49. https://doi.org/10.1186/s12859-019-2632-9
Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J. & von Mering, C. (2021). The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 49, Iss. D1, pp. D605-D612. https://doi.org/10.1093/nar/gkaa1074
Huang, J. & MacKerell, A. D., Jr. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem., 34, No. 25, pp. 2135-2145. https://doi.org/10.1002/jcc.23354
Kast, D. J. & Dominguez, R. (2017). The cytoskeleton-autophagy connection. Curr. Biol., 27, No. 8, pp. R318-R326. https://doi.org/10.1016/j.cub.2017.02.061
Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., Figurnov, M., Cowie, A., Hobbs, N., Kohli, P., Kleywegt, G., Birney, E., Hassabis, D. & Velankar, S. (2022). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res., 50, Iss. D1, pp. D439-D444. https://doi.org/10.1093/nar/ gkab1061
Ye, Y., Tyndall, E. R., Bui, V., Bewley, M. C., Wang, G., Hong, X., Shen, Y., Flanagan, J. M., Wang, H. G. & Tian, F. (2023). Multifaceted membrane interactions of human Atg3 promote LC3-phosphatidylethanolamine conjugation during autophagy. Nat. Commun., 14, 5503. https://doi.org/10.1038/s41467-023-41243-4
Rao, S., Skulsuppaisarn, M., Strong, L. M., Ren, X., Lazarou, M., Hurley, J. H. & Hummer, G. (2024). Three-step docking by WIPI2, ATG16L1, and ATG3 delivers LC3 to the phagophore. Sci. Adv., 10, No. 6, eadj8027. https:// doi.org/10.1126/sciadv.adj8027
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.