The Dirichlet problem for the Beltrami equations in simply connected domains

Authors

  • I. V. Petkov

DOI:

https://doi.org/10.15407/dopovidi2015.11.012

Keywords:

Beltrami equations, Dirichlet problem, prime ends, regular solutions, simply connected domains

Abstract

Under certain conditions on the dilatation coefficient Kµ, the existence of regular solutions of the Dirichlet problem for the Beltrami equations in arbitrary simply connected domains is proved.

Downloads

References

Kovtonyuk D., Petkov I., Ryazanov V. Ukr. Mat. Zh., 2011, 63, No 8: 1078–1091 (in Russian).

Kovtonyuk D., Petkov I., Ryazanov V. Ukr. Mat. Zh., 2012, 64, No 7: 932–944 (in Russian). https://doi.org/10.1007/s11253-012-0699-9

Collingwood E. F., Lohwater A. J. The Theory of Cluster Sets, Cambridge Tracts in Math. and Math. Physics 56, Cambridge: Cambridge Univ. Press, 1966. https://doi.org/10.1017/CBO9780511566134

Petkov I. V. Dopov. Nac. akad. nauk Ukr., 2015, No 6: 19–24 (in Russian).

Goluzin G. M. Geometric Theory of Functions of a Complex Variable, Transl. of Math. Monographs, 26, Providence, AMS, 1969.

Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E. The Beltrami Equation: A Geometric Approach, Developments in Mathematics, Vol. 26, New York etc: Springer, 2012. https://doi.org/10.1007/978-1-4614-3191-6

Ignat'ev A., Ryazanov V. Ukr. Mat. Visn., 2005, 2, No 3: 395–417 (in Russian).

Ryazanov V., Sevost'yanov E. Sibirsk. Math. Zh., 2007, 48, No 6: 1361–1376 (in Russian).

Ryazanov V., Srebro U., Yakubov E. Ukr. Mat. Visn., 2010, 7, No 1: 73–87 (in Russian).

Published

08.02.2025

How to Cite

Petkov, I. V. (2025). The Dirichlet problem for the Beltrami equations in simply connected domains . Reports of the National Academy of Sciences of Ukraine, (11), 12–17. https://doi.org/10.15407/dopovidi2015.11.012