The Dirichlet problem for the Beltrami equations in simply connected domains
DOI:
https://doi.org/10.15407/dopovidi2015.11.012Keywords:
Beltrami equations, Dirichlet problem, prime ends, regular solutions, simply connected domainsAbstract
Under certain conditions on the dilatation coefficient Kµ, the existence of regular solutions of the Dirichlet problem for the Beltrami equations in arbitrary simply connected domains is proved.
Downloads
References
Kovtonyuk D., Petkov I., Ryazanov V. Ukr. Mat. Zh., 2011, 63, No 8: 1078–1091 (in Russian).
Kovtonyuk D., Petkov I., Ryazanov V. Ukr. Mat. Zh., 2012, 64, No 7: 932–944 (in Russian). https://doi.org/10.1007/s11253-012-0699-9
Collingwood E. F., Lohwater A. J. The Theory of Cluster Sets, Cambridge Tracts in Math. and Math. Physics 56, Cambridge: Cambridge Univ. Press, 1966. https://doi.org/10.1017/CBO9780511566134
Petkov I. V. Dopov. Nac. akad. nauk Ukr., 2015, No 6: 19–24 (in Russian).
Goluzin G. M. Geometric Theory of Functions of a Complex Variable, Transl. of Math. Monographs, 26, Providence, AMS, 1969.
Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E. The Beltrami Equation: A Geometric Approach, Developments in Mathematics, Vol. 26, New York etc: Springer, 2012. https://doi.org/10.1007/978-1-4614-3191-6
Ignat'ev A., Ryazanov V. Ukr. Mat. Visn., 2005, 2, No 3: 395–417 (in Russian).
Ryazanov V., Sevost'yanov E. Sibirsk. Math. Zh., 2007, 48, No 6: 1361–1376 (in Russian).
Ryazanov V., Srebro U., Yakubov E. Ukr. Mat. Visn., 2010, 7, No 1: 73–87 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.