Comparative study of magnetic properties and the anticancer effect of superparamagnetic and ferromagnetic iron oxide nanoparticles in the nanocomplex with doxorubicin

Authors

  • V. E. Orel
  • A. D. Shevchenko
  • O. Yu. Rykhalskyi
  • A. V. Romanov
  • I. V. Orel
  • S. N. Lukin
  • A. P. Burlaka
  • E. F. Venger

DOI:

https://doi.org/10.15407/dopovidi2015.09.113

Keywords:

carcinosarcoma Walker-256, electromagnetic field, electron spin resonance, ferromagnetic nanoparticles, magnetic properties, superparamagnetic nanoparticles

Abstract

Mechano-magneto-chemically synthesized magnetic nanocomplex (MNC) of superparamagnetic iron oxide Fe3O4 nanoparticles (NP) and anticancer drug doxorubicin (DR) had significantly lower saturation magnetic moment and magnetic hysteresis loop area as compared to the MNC of ferromagnetic NP. However, the last was characterized by lower coercivity. MNC of superparamagnetic NP and DR had g-factors of 2.00, 2.30, and 4.00. MNC of ferromagnetic NP and DR had the g-factor of 2.50, and the integrated intensity of electron spin resonance signals was by 61% greater. Superparamagnetic iron oxide Fe3O4 NP in MNC with DR initiated a greater antitumor effect during magnetic nanotherapy of animals with carcinosarcoma Walker-256 as compared to the MNC composed of ferromagnetic NP and DR. In the future, superparamagnetic iron oxide Fe3O4 NP as a part of the nanocomplex with DR can be used in theranostics – a methodology that combines magnetic resonance diagnostics and magnetic nanotherapy using MNC both as therapeutic and diagnostic agents.

Downloads

References

Jemal A., Bray F., Ferlay J. et al. CA Cancer J. Clin., 2011, 61, Iss. 2: 69–90. https://doi.org/10.3322/caac.20107

Yoo D., Lee J.H., Shin T.H. et al. Acc. Chem. Res., 2011, 44, Iss. 10: 863–874. https://doi.org/10.1021/ar200085c

Rosensweig R.E. J. Magn. Magn. Mat., 2002, 252: 370–374. https://doi.org/10.1016/S0304-8853(02)00706-0

Peiris P.M., Toy R., Doolittle E. et al. ACS Nano, 2012, 6, Iss. 10: 8783–8795. https://doi.org/10.1021/nn303833p

Mornet S., Vasseur S., Grasset F. et al. J. Mater. Chem., 2004, 14: 2161–2175. https://doi.org/10.1039/b402025a

Maier-Hauff K., Ulrich F., Nestler D. et al. J. Neurooncol., 2011, 103, Iss. 2: 317–324. https://doi.org/10.1007/s11060-010-0389-0

Hergt R., Dutz S. J. Magn. Magn. Mat., 2007, 311: 187–192. https://doi.org/10.1016/j.jmmm.2006.10.1156

Orel V., Shevchenko A., Romanov A. et al. Nanomedicine, 2015, 11, Iss. 1: 47–55.

Orel V.E., Shevchenko A.D., Rykhalskiy A.Y. et al. Investigation of nonlinear magnetic properties magnetomechano-chemically synthesized nanocomplex from magnetite and antitumor antibiotic doxorubicin, Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications Springer Proceedings in Physics, Vol. 156, Cham: Springer Intern. Publ., 2015: 103–110.

Giuliani F.C., Kaplan N.O. Cancer Res., 1980, 40: 4682–4687.

Emanuel N.M. Kinetics of experimental tumor processes, Moscow: Nauka, 1977 (in Russian).

Petrović A.P., Paré A., Paudel T.R. et al. New J. Phys., 2014, 16, 103012, doi: 088/1367-2630/16/10/103012.

Golovin Y.I., Gribanovskiy S.L., Golovin D.Y. et al. Physica tverdogo tela, 2014, 56, Iss. 7: 1292–1300 (in Russian).

Burlaka A.P., Sidorik E.P. Redox-dependent signaling molecules in the mechanisms of tumor processes, Kyiv: Nauk. Dumka, 2014 (in Russian).

Published

06.02.2025

How to Cite

Orel, V. E., Shevchenko, A. D., Rykhalskyi, O. Y., Romanov, A. V., Orel, I. V., Lukin, S. N., Burlaka, A. P., & Venger, E. F. (2025). Comparative study of magnetic properties and the anticancer effect of superparamagnetic and ferromagnetic iron oxide nanoparticles in the nanocomplex with doxorubicin . Reports of the National Academy of Sciences of Ukraine, (9), 113–121. https://doi.org/10.15407/dopovidi2015.09.113

Most read articles by the same author(s)