Magnetic nanotherapy of animals with carcinosarcoma Walker-256

Authors

  • V. E. Orel
  • A.D. Shevchenko
  • O.Yu. Rykhalskyi
  • A.V. Romanov
  • A.P. Burlaka
  • S.N. Lukin
  • E. F. Venger
  • E. P. Sydoryk
  • I.B. Schepotin

DOI:

https://doi.org/10.15407/dopovidi2014.11.172

Keywords:

animals, carcinosarcoma, magnetic nanotherapy, Walker-256

Abstract

Our experiments have shown that the antitumor activity of magnetic nanotherapy depends on the magnetic nanocomplex (MNC) parameters. MNC consisted of nanoparticles Fe3O4 and antitumor drug doxorubicin. Tumor-transplanted animals were subjected to the irradiation by permanent magnetic and electromagnetic fields. The highest antitumor activity and the survival rate of animals were observed after the treatment by MNC with the larger magnetic moment of saturation, and the large area square of the hysteresis loop and the lower coercivity. Intratumoral temperature does not exceed 38 ºC. The obtained results can be used to treat cancer patients.

Downloads

References

Amiji M. M. Nanotechnology for Cancer Therapy, Boca Raton: CRC Press, 2007.

Orel V., Dziatkovskaia N., Romanov A. Magnetic nanoterapiya cancer. Vol. 1, Saarbrucken: Lambert Academic Publishing, 2013.

Salikhov K. M., Molin Y. N., Sagdeev R. Z., Buchachenko A. L. Spin polarization and magnetic effects in radical reactions, Amsterdam: Elsevier, 1984.

Gielen M., Tiekink E. R. Metallotheraputic drugs and metal-based diagnostic agents – the use of metals in medicine, Chichester: Wiley, 2005. https://doi.org/10.1002/0470864052

Giuliani F. C., Kaplan N. O. Cancer research, 1980, 40: 4682–4687.

Emanuel N. M. The kinetics of experimental tumor processes, Moscow: Nauka, 1977 (in Russian).

Kaplan E. L., Meier P. J. Amer. Statist. Assoc., 1958, 53, No 282: 457–481. https://doi.org/10.1080/01621459.1958.10501452

Orel V. E., Shevchenko A. D., Dziatkovska I. I., Nikolov M. O., Romanov A. V., Rikhalskii A. Yu., Burlaka A. P., Lukin S. M., Dziatkovska N. M., Shepotin I. B. Dopov. Nac. akad. nauk Ukr., 2013, No 2: 177–183 (in Ukrainian).

Shah S. A., Jain R. K., Finney P. L. Cancer Lett, 1983, 19, Iss. 3: 317–323. https://doi.org/10.1016/0304-3835(83)90101-5

Shavel A., Rodr´ıguez-Gonz´alez B., Spasova M. et al. Adv. Funct. Mater., 2007, 17: 3870–3876. https://doi.org/10.1002/adfm.200700494

Osinskiy S., Vaupel S. Microphysiology of tumors, Kiev: Nauk. dumka, 2009 (in Russian).

Ghodbane S., Lahbib A., Sakly M., Abdelmelek H. BioMed Res. Int., 2013. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763575/.

Orel V. E., Grabovoi A. N., Romanov A. V., Kharkevich N. A., Schepotin I. B. Biul. eksperim. biologii i meditsiny, 2013, No 4: 479–482 (in Russian).

Cohen A. E. J. Phys. Chem., 2009, 113:11084– 11092. https://doi.org/10.1021/jp907113p

Orel V. E., Dzyatkovskaya N. N., Kruchkov E. I., Nikolov N. A., Rykhalskiy A. Y. et al. The Effect of the Inhomogeneous Magnetic Fields on the Antitumor Activity of Magnetic Nanotherapy. In: Proc. of 2014 IEEE XXXIV Intern. Sci. Conf. Electronics and Nanotechnology (ELNANO). – Heidelberg: Springer, 2014: 329–333. https://doi.org/10.1109/elnano.2014.6873909

Published

11.03.2025

How to Cite

Orel, V. E., Shevchenko, A., Rykhalskyi, O., Romanov, A., Burlaka, A., Lukin, S., Venger, E. F., Sydoryk, E. P., & Schepotin, I. (2025). Magnetic nanotherapy of animals with carcinosarcoma Walker-256 . Reports of the National Academy of Sciences of Ukraine, (11), 172–179. https://doi.org/10.15407/dopovidi2014.11.172