About Lyapunov characteristic indices

Authors

  • N. V. Nikitina

DOI:

https://doi.org/10.15407/dopovidi2015.08.064

Keywords:

bifurcation, nonlinear system, orbital loss of stability, strange attractor

Abstract

An approach to finding the Lyapunov characteristic indices is presented for the tasks of chaotic motions. The approach is based on the analysis of the bifurcations of points of a trajectory.

Downloads

References

Neimark Yu. I., Landa P. S. Stochastic and Chaotic Oscillations, Dordrecht: Kluwer, 1992. https://doi.org/10.1007/978-94-011-2596-3

Anishchenko V. S. Complex Oschillations in Simple Systems, Moscow: Nauka, 1990 (in Russian).

Benettin G., Galgani I., Strelcyn J.M. Phys. Rev. A., 1976, 14, No 6: 2338–2345. https://doi.org/10.1103/PhysRevA.14.2338

Shilnikov L.P., Shilnikov A. L., Turaev D.V., Chua L.O. Methods of Qualitative Theory in Nonlinear Dynamics. Part I., Singapore: World Scientific, 1998. https://doi.org/10.1142/9789812798596

Leonov G.A. Strange Attractors and Classical Stability Theory, St.-Petersburg: University Press, 2008.

Martynyuk A.A., Nikitina N.V. Int. Appl. Mech., 2015, 51, No 2: 540–541. https://doi.org/10.1007/s10778-015-0687-5

Martynyuk A.A., Nikitina N.V. Nonlinear Oscillations, 2014, 17, No 2: 268–280.

Published

05.02.2025

How to Cite

Nikitina, N. V. (2025). About Lyapunov characteristic indices . Reports of the National Academy of Sciences of Ukraine, (8), 64–71. https://doi.org/10.15407/dopovidi2015.08.064