Connection of the topology of a system in variations with the character of attractors
DOI:
https://doi.org/10.15407/dopovidi2016.05.043Keywords:
nonlinear systems, bifurcation, orbital loss of stability, strange attractorAbstract
The analysis of the field of a system in variations and its influence on the nature of attractors is presented.
Downloads
References
Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O. Methods of Qualitative Theory in Nonlinear
Dynamics. Part I., Singapore: World Scientific, 1998.
Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O. Methods of Qualitative Theory in Nonlinear
Dynamics. Part II., Singapore: World Scientific, 2001.
Leonov G. A. Strange Attractors and Classical Stability Theory. St. Petersburg Univ. Press, 2008.
Neimark Yu. I., Landa P. S. Stochastic and Chaotic Oscillations, Dordrecht: Kluwer, 1992.
Anishechenro V. S., Astakhov V. V., Vadivasova T. E., Sosnovtseva O. V., Wu C. W., Chua L. Int. J. of
Bifurcation and Chaos, 1995, 5, No 6: 1677–1699.
Khibnik A. I., Roose D., Chua L. Chua’s Circuit: A Paradigm for Chaos, Singapore: World Scientific, 1993.
Komuro M., Tokunaga R., Matsumoto T., Chua L., Hotta A. Int. J Bifurcations and Chaos, 2001, 1, No 1:
–182.
Martynyuk A. A., Nikitina N. V. Nonlinear Oscillations, 2014, 17, No 2: 268–280 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.