Connection of the topology of a system in variations with the character of attractors

Authors

  • N. V. Nikitina S.P. Timoshenko Institute of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2016.05.043

Keywords:

nonlinear systems, bifurcation, orbital loss of stability, strange attractor

Abstract

The analysis of the field of a system in variations and its influence on the nature of attractors is presented.

Downloads

Download data is not yet available.

References

Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O. Methods of Qualitative Theory in Nonlinear

Dynamics. Part I., Singapore: World Scientific, 1998.

Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O. Methods of Qualitative Theory in Nonlinear

Dynamics. Part II., Singapore: World Scientific, 2001.

Leonov G. A. Strange Attractors and Classical Stability Theory. St. Petersburg Univ. Press, 2008.

Neimark Yu. I., Landa P. S. Stochastic and Chaotic Oscillations, Dordrecht: Kluwer, 1992.

Anishechenro V. S., Astakhov V. V., Vadivasova T. E., Sosnovtseva O. V., Wu C. W., Chua L. Int. J. of

Bifurcation and Chaos, 1995, 5, No 6: 1677–1699.

Khibnik A. I., Roose D., Chua L. Chua’s Circuit: A Paradigm for Chaos, Singapore: World Scientific, 1993.

Komuro M., Tokunaga R., Matsumoto T., Chua L., Hotta A. Int. J Bifurcations and Chaos, 2001, 1, No 1:

–182.

Martynyuk A. A., Nikitina N. V. Nonlinear Oscillations, 2014, 17, No 2: 268–280 (in Russian).

Published

27.10.2024

How to Cite

Nikitina, N. V. (2024). Connection of the topology of a system in variations with the character of attractors. Reports of the National Academy of Sciences of Ukraine, (5), 43–49. https://doi.org/10.15407/dopovidi2016.05.043