Blood-brain barrier disfunction and development of epileptic seizures

According to the materials of scientific report at the meeting of the Presidium of the NAS of Ukraine, December 23, 2020

Authors

DOI:

https://doi.org/10.15407/visn2021.01.053

Keywords:

blood-brain barrier, temporal-lobe epilepsy, hippocampus, thrombin, synaptic plasticity

Abstract

Blood-brain barrier dysfunction (BBB) is an important factor to the development of epilepsy and its behavioral comorbidities. Disruption of its integrity is accompanied by the ingress of blood components, including thrombin, into the cerebrospinal fluid. The effect of thrombin is mediated mainly through its major receptor, protease-activated receptors 1 (PAR1). Using lithium-pilocarpine model of seizures, we show that downregulation of PAR1 activity reduces anxiety and aggressive behavior in epileptic rats and restores distinct forms of hippocampal synaptic plasticity in experimental model of temporal-lobe epilepsy. Taken together, our data suggest that PAR1-signaling promotes the development of acquired epilepsy. PAR1 may be a new potential target for the treatment of this disorder and associated behavioral pathologies.

References

Semenikhina M., Bogovyk R., Fedoriuk M., Stasyshyn O., Savotchenko A., Isaeva E. Protease-activated receptor 1 inhibition does not affect the social behavior after status epilepticus in rat. Fiziol Zh. 2018. 64(6): 17–22. DOI: https://doi.org/10.15407/fz64.06.017

Fabene P.F., Navarro Mora G., Martinello M., Rossi B., Merigo F., Ottoboni L., Bach S., Angiari S., Benati D., Chakir A., Zanetti L., Schio F., Osculati A., Marzola P., Nicolato E., Homeister J.W., Xia L., Lowe J.B., McEver R.P., Osculati F., Sbarbati A., Butcher E.C., Constantin G. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat. Med. 2008. 14(11): 1377–1383. DOI: https://doi.org/10.1038/nm.1878

Marchi N., Granata T., Freri E., Ciusani E., Ragona F., Puvenna V., Teng Q., Alexopolous A., Janigro D. Efficacy of anti-inflammatory therapy in a model of acute seizures and in a population of pediatric drug resistant epileptics. PLoS One. 2011. 6: e18200. DOI: https://doi.org/10.1371/journal.pone.0018200

Van Vliet E.A., Otte W.M., Wadman W.J., Aronica E., Kooij G., De Vries H.E., Dijkhuizen R.M., Gorter J.A. Blood-brain barrier leakage after status epilepticus in rapamycin- treated rats II: Potential mechanisms. Epilepsia. 2016. 57(1): 70–78. DOI: https://doi.org/10.1111/epi.13245

Isaev D., Lushnikova I., Lunko O., Zapukhliak O., Maximyuk O., Romanov A., Skibo G.G., Tian C., Holmes G.L., Isaeva E. Contribution of protease-activated receptor 1 in status epilepticus-induced epileptogenesis. Neurobiol. Dis. 2015. 78: 68–76. DOI: https://doi.org/10.1016/j.nbd.2015.03.026

Macfarlane S.R., Seatter M.J., Kanke T., Hunter G.D., Plevin R. Proteinase-activated receptors. Pharmacol. Rev. 2001. 53(2): 245–282.

Isaeva E., Hernan A., Isaev D., Holmes G.L. Thrombin facilitates seizures through activation of persistent sodium current. Ann. Neurol. 2012. 72: 192–198. DOI: https://doi.org/10.1002/ana.23587

Racine R.J. Modification of seizure activity by electrical modification of after-discharge. Electroencephalogr. Clin. Neurophysiol. 1972. 32(3): 281–294. DOI: https://doi.org/10.1016/0013-4694(72)90176-9

Semenikhina M., Bogovik R., Fedoryuk M., Lunko О., Savotchenko A., Isaeva E. Pharmacological blockade of protease-activated receptors 1 normalizes emotional excitability of rats in the latent stage of the formation of temporal lobe epilepsy. Fiziol. Zh. 2019. 65(3): 7–11. DOI: https://doi.org/10.15407/fz65.03.007

Lunko O.O., Bogovyk R.I., Fedoriuk M.P., Semenets G.S., Isaeva E.V. The protease-activated receptor 1 inhibition during epileptogenesis does not alter behavioral excitability in rats. Fiziol. Zh. 2018. 64(2): 12–18. DOI: https://doi.org/10.15407/fz64.02.012

Temkin N.R., Dikmen S.S., Anderson G.D., Wilensky A.J., Holmes M.D., Cohen W., Newell D.W., Nelson P., Awan A. Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J. Neurosurg. 1999. 91(4): 593–600. DOI: https://doi.org/10.3171/jns.1999.91.4.0593

Semenikhina M., Bogovyk R., Fedoriuk M., Nikolaienko O., Alkury L.T., Savotchenko A., Krishtal O., Isaeva E. Inhibition of protease-activated receptor 1 ameliorates behavioral deficits and restores hippocampal synaptic plasticity in a rat model of status epilepticus. Neurosci. Lett. 2019. 692: 64–68. DOI: https://doi.org/10.1016/j.neulet.2018.10.058

Savotchenko A., Semenikhina M., Krasnianchuk I., Bogovyk R., Honcharova A., Isaeva E. Behavioral consequences of enterobiasis in rats. Fiziol. Zh. 2019. 65(1): 20-25. DOI: https://doi.org/10.15407/fz65.01.020

Inostroza M., Cid E., Menendez de la Prida L., Sandi C. Different emotional disturbances in two experimental models of temporal Lobe Epilepsy in rats. PLoS One. 2012. 7. DOI: https://doi.org/10.1371/journal.pone.0038959

Bogovyk R., Lunko O., Fedoriuk M., Isaev D., Krishtal O., Holmes G.L., Isaeva E. Effects of protease-activated receptor 1 inhibition on anxiety and fear following status epilepticus. Epilepsy Behav. 2017. 67(2): 66–69. DOI: https://doi.org/10.1016/j.yebeh.2016.11.003

Wang J., Jin H., Hua Y., Keep R.F., Xi G. Role of protease-activated receptor-1 in brain injury after experimental global cerebral ischemia. Stroke. 2012. 43(9): 2476–2482. DOI: https://doi.org/10.1161/STROKEAHA.112.661819

Itzekson Z., Maggio N., Milman A., Shavit E., Pick C.G., Chapman J. Reversal of trauma-induced amnesia in mice by a thrombin receptor antagonist. J. Mol. Neurosci. 2014. 53: 87–95. DOI: https://doi.org/10.1007/s12031-013-0200-8

Curia G., Lucchi C., Vinet J., Gualtieri F., Marinelli C., Torsello A., Costantino L., Biagini G. Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic. Curr. Med. Chem. 2014. 21(6): 663–688. DOI: https://doi.org/10.2174/0929867320666131119152201

Savotchenko A., Romanov A., Isaev D., Maximyuk O., Holmes G., Isaeva E. Neuraminidase inhibition primes short-term depression and suppresses long-term potentiation of synaptic transmission in the rat hippocampus. Neural Plast. 2015. Article ID 908190. DOI: https://doi.org/10.1155/2015/908190

Pena F., Bargas J., Tapia R. Paired pulse facilitation is turned into paired pulse depression in hippocampal slices after epilepsy induced by 4-aminopyridine in vivo. Neuropharmacology. 2002. 42(6): 807–812. DOI: https://doi.org/10.1016/S0028-3908(02)00024-2

El-Hassar L., Esclapez M., Bernard C. Hyperexcitability of the CA1 hippocampal region during epileptogenesis. Epilepsia. 2007. 48(5): 131–139. DOI: https://doi.org/10.1111/j.1528- 1167.2007.01301.x

Schubert M., Siegmund H., Pape H.-C., Albrecht D. Kindling-induced changes in plasticity of the rat amygdala and hippocampus. Learn. Mem. 2005. 12(5): 520–526. DOI: https://doi.org/10.1101/lm.4205

Reid I.C., Stewart C.A. Seizures, memory and synaptic plasticity. Seizure. 1997. 6(5): 351–359. DOI: https://doi.org/10.1016/S1059-1311(97)80034-9

Bo T., Jiang Y., Cao H., Wang J., Wu X. Long-term effects of seizures in neonatal rats on spatial learning ability and N-methyl-D-aspartate receptor expression in the brain. Brain Res. Dev. Brain Res. 2004. 152(2): 137–142. DOI: https://doi.org/10.1016/j.devbrainres.2004.06.011

Leung L.S., Wu C.P. Kindling suppresses primed-burst-induced long-term potentiation in hippocampal CAI. Neuroreport. 2003.14(2): 211–214. DOI: https://doi.org/10.1097/01.wnr.0000054957.21656.44

Beck H., Goussakov I.V., Lie A., Helmstaedter C., Elger C.E. Synaptic plasticity in the human dentate gyrus. J. Neurosci. 2000. 20(18): 7080–7086. DOI: https://doi.org/10.1523/JNEUROSCI.20-18-07080.2000

Arai T., Miklossy J., Klegeris A., Quo J.P., McGeer P.L. Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. J. Neuropathol. Exp. Neurol. 2006. 65(1): 19–25. DOI: https://doi.org/10.1097/01.jnen.0000196133.74087.cb

Striggow F., Riek-Burchardt M., Kiesel A., Schmidt W., Henrich-Noack P., Breder J., Krug M., Reymann K.G., Reiser G. Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia. Eur. J. Neurosci. 2001. 14(4): 595–608. DOI: https://doi.org/10.1046/j.0953-816x.2001.01676.x

Wang H., Ubl J.J., Reiser G. Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia. 2002. 37(1): 53–63. DOI: https://doi.org/10.1002/glia.10012

Garcia P.S., Ciavatta V.T., Fidler J.A., Woodbury A., Levy J.H., Tyor W.R. Concentration-Dependent Dual Role of Thrombin in Protection of Cultured Rat Cortical Neurons. Neurochem. Res. 2015. 40(9): 2220–2229. DOI: https://doi.org/10.1007/s11064-015-1711-1

Turgeon V.L., Milligan C.E., Houenou L.J. Activation of the protease-activated thrombin receptor (PAR)-1 induces motoneuron degeneration in the developing avian embryo. J. Neuropathol. Exp. Neurol. 1999. 58(5): 499–504. DOI: https://doi.org/10.1097/00005072-199905000-00009

Wang H., Ubl J.J., Stricker R., Reiser G. Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am. J. Physiol. Cell Physiol. 2002. 283(11): 1351–1364. DOI: https://doi.org/10.1152/ajpcell.00001.2002

Gingrich M.B., Junge C.E., Lyuboslavsky P., Traynelis S.F. Potentiation of NMDA receptor function by the serine protease thrombin. J. Neurosci. 2000. 20(12): 4582–4595. DOI: https://doi.org/10.1523/JNEUROSCI.20-12-04582.2000

Almonte A.G., Qadri L.H., Sultan F.A., Watson J.A., Mount D.J., Rumbaugh G., Sweatt J.D. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J. Neurochem. 2013. 124(1): 109–122. DOI: https://doi.org/10.1111/jnc.12075

Lee C.J., Mannaioni G., Yuan H., Woo D.H., Gingrich M.B., Traynelis S.F. Astrocytic control of synaptic NMDA receptors. J. Physiol. 2007. 581(3): 1057–1081. DOI: https://doi.org/10.1113/jphysiol.2007.130377

Duan Z.-Z., Zhang F., Li F.-Y., Luan Y.-F., Guo P., Li Y.-H., Liu Y., Qi S.-H. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH). Sci. Rep. 2016. 6: 29246. DOI: https://doi.org/10.1038/srep29246

Nicoll R.A., Malenka R.C. Expression mechanisms underlying NMDA receptor- dependent long-term potentiation. Ann. N. Y. Acad. Sci. 1999. 868(1): 515–525. DOI: https://doi.org/10.1111/j.1749-6632.1999.tb11320.x

Published

2021-01-18

How to Cite

Savotchenko, A. V. (2021). Blood-brain barrier disfunction and development of epileptic seizures: According to the materials of scientific report at the meeting of the Presidium of the NAS of Ukraine, December 23, 2020. Visnyk of the National Academy of Sciences of Ukraine, (1), 53–61. https://doi.org/10.15407/visn2021.01.053