New phases of quantum matter and topology

Nobel Prize in Physics for 2016

Authors

  • I.V. Krive Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv
  • S.I. Shevchenko Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv

DOI:

https://doi.org/10.15407/visn2016.12.063

Keywords:

topological phase transitions, topological phases, topological invariants, Hall conductivity, spin chains

Abstract

In 2016 the Nobel Committee in Physics awarded Prof. D.J. Thouless (1/2 prize), Prof. J.M. Kosterlitz (1/4 prize) and Prof. F.D.M. Haldane (1/4 prize) for “theoretical discovery of topological phase transitions and topological phases of matter”. We discuss new ideas and the results of papers where (i) topological phase transitions (Berezinskii–Kosterlitz–Thouless phase transitions) in two-dimensional condensed matter were theoretically predicted, (ii) a deep connection between quantization of the Hall conductivity in 2D systems with violated T-invariance and topological quantities (Chern invariant) was revealed (Thouless–Kohmoto–Nightingale–den Nijs), (iii) new quantum phase (Haldane phase) of spin chains with integer spin was predicted. Main attention was given to qualitative explanation of the predicted new phenomena. We follow the interconnections between the cited works of Nobel laureates and low-dimensional models of relativistic quantum field theory where the crucial role of topological invariants in the special phases of quantum matter was first noted.

References

Peierls R. Bemerkungen über Umwandlungstemperaturen (Remarks on transition temperatures). Helv. Phys. Acta. 1934. 7(Suppl. 2): 81.

Landau L.D. By the theory of phase transitions. JETP. 1937. 7:627.

Mermin N.D., Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966. 17(26): 1133.https://doi.org/10.1103/PhysRevLett.17.1133

Hohenberg P.C. Existence of long-range order in one and two dimensions. Phys. Rev. 1967. 158(2): 383.https://doi.org/10.1103/PhysRev.158.383

Bogolyubov N.N. Quasi-averages in problems of statistical mechanics. (Dubna: JINR, 1961).

Stanley H.E., Kaplan T.A. Possibility of a phase transition for the two-dimensional Heisenberg model. Phys. Rev. Lett. 1966. 17(17): 913.https://doi.org/10.1103/PhysRevLett.17.913

Stanley H.E. Dependence of critical properties on dimensionality of spins. Phys. Rev. Lett. 1968. 20(12): 589.https://doi.org/10.1103/PhysRevLett.20.589

Moore M.A. Additional evidence for a phase transition in the plane-rotator and classical Heisenberg models for two-dimensional lattices. Phys. Rev. Lett. 1969. 23(15): 861.https://doi.org/10.1103/PhysRevLett.23.861

Berezinskii V.L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems. JETP. 1971. 32(3): 493.

Berezinskii V.L. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. JETP. 1972. 34(3): 610.

Kosterlitz J.M., Thouless D.J. Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory). J. Phys. C. 1972. 5(11): 124.https://doi.org/10.1088/0022-3719/5/11/002

Kosterlitz J.M., Thouless D.J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C. 1973. 6(7): 1181.https://doi.org/10.1088/0022-3719/6/7/010

Halperin B.I., Nelson D.R. Theory of two-dimensional melting. Phys. Rev. Lett. 1978. 41(2): 519.https://doi.org/10.1103/PhysRevLett.41.519

Young A.P. Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B. 1979. 19(4):1855.https://doi.org/10.1103/PhysRevB.19.1855

Beasley M.R., Mooij J.E., Orlando T.P. Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys Rev. Lett. 1979. 42(17): 1165.https://doi.org/10.1103/PhysRevLett.42.1165

Doniach S., Huberman B.A. Topological excitations in two-dimensional superconductors. Phys. Rev. Lett. 1979. 42(17): 1169.https://doi.org/10.1103/PhysRevLett.42.1169

von Klitzing K., Dorda G., Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 1980. 45(6): 494.https://doi.org/10.1103/PhysRevLett.45.494

von Klitzing K. The quantized Hall effect. In: Nobel Lectures in Physics 1981–1990. (World Scientific Publishing Company, 1993).

Tsui D.C., Stormer H.L., Gossard A.C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 1982. 48(22): 1559.https://doi.org/10.1103/PhysRevLett.48.1559

Laughlin R.B. Quantized Hall conductivity in two dimensions. Phys. Rev. B. 1981. 23(10): 5632.https://doi.org/10.1103/PhysRevB.23.5632

Thouless D.J., Kohmoto M., Nightingale M.P., den Nijs M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 1982. 49(6): 405.https://doi.org/10.1103/PhysRevLett.49.405

Haldane F.D.M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the "Parity Anomaly". Phys. Rev. Lett. 1988. 61(18): 2015.https://doi.org/10.1103/PhysRevLett.61.2015

Chang C.-Z., Zhang J., Feng X., Shen J., Zhang Z., Guo M., Li K., Ou Y., Wei P., Wang L.-L., Ji Z.-Q., Feng Y., Ji S., Chen X., Jia J., Dai X., Fang Z., Zhang S.-C., He K., Wang Y., Lu L., Ma X.-C., Xue Q.-K. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science. 2013. 340(6129): 167.https://doi.org/10.1126/science.1234414

Chang C.-Z., Zhao W., Kim D.Y., Zhang H., Assaf B.A., Heiman D., Zhang S.-C., Liu C., Chan M.H.W., Moodera J.S. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 2015. 14: 473.https://doi.org/10.1038/nmat4204

Jotzu G., Messer M., Desbuquois R., Lebrat M., Uehlinger T., Greif D., Esslinger T. Experimental realization of the topological Haldane model with ultracold fermions. Nature. 2014. 515: 237.https://doi.org/10.1038/nature13915

Haldane F.D.M. Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the O(3) nonlinear sigma model. Phys. Lett. A. 1983. 93(9): 464.https://doi.org/10.1016/0375-9601(83)90631-X

Haldane F.D.M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Neel state. Phys. Rev. Lett. 1983. 50(15): 1153.https://doi.org/10.1103/PhysRevLett.50.1153

Bethe H. Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Physik. 1931. 71: 205.https://doi.org/10.1007/BF01341708

Belavin A.A., Polyakov A.M. Metastable states of two-dimensional isotropic ferromagnet. JETP Letters. 1975. 22(10): 245.

Pohlmeyer K. Integrable Hamiltonian systems and interactions through quadratic constraints. Commun. Math. Phys. 1976. 46(3): 207.https://doi.org/10.1007/BF01609119

Polyakov A.M. Hidden symmetry of the two-dimensional chiral fields. Phys. Lett. B. 1977. 72(2): 224.https://doi.org/10.1016/0370-2693(77)90707-9

Coleman S., Weinberg E. Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D. 1973. 7: 1888.https://doi.org/10.1103/PhysRevD.7.1888

Krive I.V., Rozhavskii A.S. Fractional charge in quantum field theory and solid-state physics. Sov. Phys. Usp. 1987. 30: 370.https://doi.org/10.1070/PU1987v030n05ABEH002884

Polyakov A.M. Compact gauge fields and the infrared catastrophe. Phys. Lett. B. 1975. 59(1): 82.https://doi.org/10.1016/0370-2693(75)90162-8

Belavin A.A., Polyakov A.M., Tyupkin Yu.S., Schwartz A.S. Pseudoparticle solutions of the Yang-Mills equations. Phys. Lett. B. 1975. 59(1): 85.https://doi.org/10.1016/0370-2693(75)90163-X

Shankar R., Read N. The nonlinear sigma model is massless. Nucl. Phys. B. 1990. 336(3): 457.https://doi.org/10.1016/0550-3213(90)90437-I

Buyers W.J.L., Morra R.M., Armstrong R.L., Hogan M.J., Gerlach P., Hirakawa K. Experimental evidence for the Haldane gap in a spin-1 nearly isotropic antiferromagnetic chain. Phys. Rev. Lett. 1986. 56(4): 371.https://doi.org/10.1103/PhysRevLett.56.371

Published

2025-05-11