АНАЛІЗ ДАНИХ ПЕРСОНАЛІЗОВАНОГО ПРИЙНЯТТЯ ІНВЕСТИЦІЙНИХ РІШЕНЬ З ВИКОРИСТАННЯМ АВТОМАТИЗОВАНИХ ФІНАНСОВИХ КОНСУЛЬТАНТІВ
DOI:
https://doi.org/10.15407/scine16.02.080Ключові слова:
робо-консультант, аналіз даних, довгострокове прийняття рішень, ануїтет.Анотація
Вступ. На сьогодні проблема пошуку оптимального балансу між споживанням та заощадженнями, перетвореними в
інвестиції, вирішується за допомогою автоматизованих систем прийняття інвестиційних рішень, прикладом яких є
послуги автоматизованих фінансових консультантів або робо-консультантів (robo-advisers), які працюють на базі
математичного алгоритму, що ґрунтується на теорії споживання та заощадження.
Проблематика. Завданням розробленого ІТ сервісу є підтримка постійного рівня споживання клієнта протягом
всього періоду життя шляхом автоматичного аналізу того, скільки він/вона має споживати та заощаджувати щороку.
Результати пропозицій щодо співвідношення споживання та заощадження можуть змінюватися при зміні початкових
фінансових даних.
Мета. Розробити інвестиційний план для профайлів інвесторів з урахуванням їх схильності до ризику за допомогою
аналізу даних сервісом автоматизованих фінансових консультантів (robo-advisers).
Матеріали і методи. SWOT-аналіз послуг робо-консультантів (RA) та порівняльні характеристики робо-консультантів пояснюють переваги сервісу RА. Мікросервіс для розрахунку стабільного рівня споживання і модель фінансового консультування робо-консультанта для гарантування стабільного рівня споживання клієнта розроблено з використанням низки технологій: Python 3.6, Django 2.0, Django Rest framework, AngularJs, HTML5, CSS 3, Bootstrap.
Результати. Розглянуто співвідношення споживання—заощадження, нові тенденції послуг робо-консультантів
(RA) використовуваних для прийняття інвестиційних рішень. Розроблено математичну модель робо-консультанта в
довгостроковій перспективі та описано підтримку прийняття інвестиційного рішення в довгостроковій перспективі
за участі програмного модуля робо-консультанта.
Висновки. Розробку RA призначено, насамперед, для приватних осіб (інвесторів), які інвестують у довгострокові
фінансові інструменти, з метою забезпечення їхнього постійного пасивного доходу на основі обраного ними періоду
заощадження і моменту виходу на пенсію.
Посилання
The Rise of Robo-Advice. Changing the Concept of Wealth Management.
URL: https://www.accenture.com/_acnmedia/PDF-2/Accenture-Wealth-Management-Ri.
(Last accessed: 16.12.2018).
Park, J. Y., Ryu, J. P., Shin, H. J. (2016). Robo Advisors for Portfolio Management. Adanced Science and Technology Letters, 141 (Green and Smart Technology II), 104-108.
https://doi.org/10.14257/astl.2016.141.21
Alós-Ferrer, C., Hügelschäfer, S., Li, J. (2016). Inertia and Decision Making. Front. Psychol., 7, 169.
https://doi.org/10.3389/fpsyg.2016.00169
Park, J. H., Ryu, J. P., Shin, H. J. (2016). Predicting KOSPI Stock Index using Machine Learning Algorithms with Technical Indicators. Journal of Information Technology and Architecture, 13, 331–340.
The expansion of Robo-Advisory in Wealth Management - Deloitte.
URL: https://www2.deloitte.com/content/dam/Deloitte/de/Documents/financial-se.
(Last accessed: 16.12.2018).
Jung, D., Dorner, V., Glaser, F., Morana, S. (2018). Robo-Advisory - Digitalization and Automation of Financial Advisory. Business & Information Systems Engineering, 60(1), 81-86.
https://doi.org/10.1007/s12599-018-0521-9
Kohavi, R., Provost, F. (1998). Glossary of terms. Machine Learning - Special Issue on Applications of Machine Learning and the Knowledge Discovery Process. Machine Learning, 30, 271-274.
https://doi.org/10.1023/A:1017181826899
The implications of machine learning in finance.
URL: https://www.bloomberg.com/professional/blog/implications-machine-learnin.
(Last accessed: 16.12.2018).
Lam, J. W. (2016). Robo-Advisers: A Portfolio Management Perspective. Senior Thesis, Yale College.
URL: http://economics.yale.edu/sites/default/files/files/Undergraduate/Nomina.
Faggella, D. Machine Learning in Finance – Present and Future Applications.
URL: https://www.techemergence.com/machine-learning-in-finance/ (Last accessed: 16.12.2018).
Kashner, E. Ghosts in the Robo Advisor Machine.
URL: http://www.etf.com/sections/blog/22973-ghosts-in-the-robo-advisor-machin.
(Last accessed: 16.12.2018).
Markowitz, H. M. (1952). Portfolio Selection. The Journal of Finance. 7(1), 77-91.
https://doi.org/10.2307/2975974
Fisher, I. (1977). The Theory of interest. Philadelphia: Porcupine Press.
Black, F., Litterman, R. (1992). Global Portfolio Optimization. Financial Analysts Journal, 48(5), 28-43.
https://doi.org/10.2469/faj.v48.n5.28
Baker, T., Dellaert, B. (2018). Regulating Robo Advice Across the Financial Services Industry. Faculty Scholarship at Penn Law. 1740.
URL: https://scholarship.law.upenn.edu/faculty_scholarship/1740 (Last accessed: 16.12.2018)
Betterment Review.
URL: https://www.nerdwallet.com/blog/investing/betterment-review/ (Last accessed: 16.12.2018).
Future Advisor Review.
URL: https://www.nerdwallet.com/blog/investing/futureadvisor-review/
(Last accessed: 16.12.2018).
Thangavelu, P. Motif Investing Broker Review: Easy Thematic Investing.
URL: https://www.investopedia.com/articles/active-trading/030415/motif-invest.
(Last accessed: 16.12.2018).
Motif Investment Review.
URL: https://www.nerdwallet.com/blog/investing/motif-investing-review-1/
(Last accessed: 16.12.2018).
Fein, M. L. Robo-Advisors: a Closer Look.
URL: http://dx.doi.org/10.2139/ssrn.2658701 (Last accessed: 16.12.2018).
https://doi.org/10.2139/ssrn.2658701
Robo advising - KPMG.
URL: https://home.kpmg.com/content/dam/kpmg/pdf/2016/07/Robo-Advising-Catchin.
(Last accessed: 16.12.2018).
Kobets, V., Yatsenko, V. (2016). Adjusting business processes by the means of an autoregressive model using BPMN 2.0. CEUR Workshop Proceedings, 1614, 518–533.
URL: CEUR-WS.org/Vol-1614/ICTERI-2016-CEUR-WS-Volume.pdf (Last accessed: 16.12.2018).
Kobets, V., Poltoratskiy, M. (2016). Using an Evolutionary Algorithm to Improve Investment Strategies for Industries in an Economic System. CEUR Workshop Proceedings, 1614, 485–501.
URL: CEUR-WS.org/Vol-1614/ICTERI-2016-CEUR-WS-Volume.pdf (Last accessed: 16.12.2018).
Snihovyi, O., Ivanov, O., Kobets, V. (2018). Implementation of Robo-Advisors Using Neural Networks for Different Risk Attitude Investment Decisions. 9th International conference on intelligent systems, (25–27 September 2018, Funchal-Madeira, Portugal), Funchal-Madeira, 2018, 332–336.
https://doi.org/10.1109/IS.2018.8710559
Kobets, V., Yatsenko, V., Mazur, A., Zubrii, M. (2018). Data Analysis of Private Investment Decision Making Using Tools of Robo-Advisers in Long-Run Period. CEUR Workshop Proceedings, 2104, 144–159.
URL: CEUR-WS.org/Vol-2104/ (Last accessed: 16.12.2018).
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2024 Положення про авторські права Автори, які публікуються у журналі «Наука та інновації», погоджуються на такі умови: Автори зберігають авторські права та надають журналу право першої публікації. Автори можуть вступати в окремі, додаткові договірні угоди для не ексклюзивного розповсюдження надрукованої у журналі «Наука та інновації» версії своєї роботи (статті) (наприклад, розмістити її в інституційному сховищі або опублікувати в своїй книзі), із підтвердженням її первинної публікації у журналі «Наука та інновації». Авторам дозволено розміщувати свою роботу в Інтернеті (наприклад, в інституційних сховищах або на їх веб-сайті).

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.