Вплив цинку на ріст і акумуляцію фітогормонів проростками Triticum aestivum L., праймованими абсцизовою кислотою
DOI:
https://doi.org/10.15407/dopovidi2019.11.093Ключові слова:
саліцилова кислота, цинк, цитокініниАнотація
Досліджено вплив цинкового стресу на ріст та акумуляцію ендогенних фітогормонів у проростках озимої пшениці, зернівки якої були праймовані абсцизовою кислотою (АБК). Показано, що в результаті інкубації на розчині цинку надлишкової концентрації (228 мг/л) гальмувався ріст кореневої системи, знижувався вміст ендогенної індоліл-3-оцтової, абсцизової кислот і зеатину та збільшувалась кількість гіберелінів, ізопентеніладенозину та саліцилової кислоти. Після додавання в інкубаційне середовище 10–6 М АБК посилювався ріст коренів, вміст стресових гормонів абсцизової та саліцилової кислот зростав. Зміни у балансі фітогормонів ініціювали захисні механізми рослин до дії високої концентрації цинку, а отже, праймування зернівок екзогенною АБК може бути використане для підвищення стресостійкості.
Завантаження
Посилання
Yamaji, N., Xia, J. X., Mitani-Ueno, N., Yokosho, K. & Ma, J. F. (2013). Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol., 162, pp. 927-939. doi: https://doi.org/10.1104/pp.113.216564
Kaznina, N. M. & Titov, A. F. (2017). Effect of zinc deficiency and excess on the growth and photosynthesis of winter wheat. J. Stress Physiol. Biochem., 13, No. 4, pp. 88-94 (in Russian).
Vasyuk, V. A., Voytenko, L. V., Shcherbatiuk, M. M. &, Kosakivska, I. V. (2019). Effect of exogenous abscisic acid on seed germination and growth of winter wheat seedlings under zinc stress. J. Stress Physiol. Biochem., 15, No. 2, pp. 68-78 (in Russian).
Bücker-Neto, L., Paiva, A. L. S., Machado, R. D., Arenhart, R. A. & Margis-Pinheiro, M. (2017). Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol., 40, pp. 373-386. doi: https://doi.org/10.1590/1678-4685-gmb-2016-0087
Sytar, O., Kumari, P., Yadav, S., Brestic, M. & Rastogi, A. (2019). Phytohormone priming: regulator for heavy metal stress in plants. J. Plant Growth Regul., 38, No. 2, pp. 739-752. doi: https://doi.org/10.1007/s00344-018-9886-8
Voytenko, L. V. & Kosakivska, I. V. (2016). Polyfunctional phytohormone abscisic acid. Visnyk Kharkiv. nats. ahr. univ. Ser. Biology, Iss. 1, pp. 27-41 (in Ukrainian).
Dobrev, P. I. & Vankova, R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in saltstressed plant tissues. In Shabala, S. & Cuin, T. (Eds.), Plant salt tolerance. Methods in Molecular Biology (Methods and Protocols), Vol. 913. Totowa, NJ: Humana Press, pp. 2251-2261. doi: https://doi.org/10.1007/978-1-61779-986-0_17
Ludwig-Muller, J. (2011). Auxin conjugates: their role for plant development and in the evolution of land plants. J. Exp. Bot., 62, No. 6, рр. 1757-1773. doi: https://doi.org/10.1093/jxb/erq412
Shi, W.-G., Li, H., Liu, T.-X., Polle, A., Peng, C.-H. & Luo, Z.-B. (2015). Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus canescens exposed to excess zinc. Plant, Cell Environ., 38, pp. 207-223. doi: https://doi.org/10.1111/pce.12434
Sofo, A., Vitti, A., Nuzzaci, M. & Tataranni, G. (2013). Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context. Physiol. Plant., 149, pp. 487-498. doi: https://doi.org/10.1111/ppl.12050
Gantait, S., Sinniah, U. R., Ali, M. N. & Sahu, N. C. (2015). Gibberellins — a multifaceted hormone in plant growth regulatory network. Curr. Protein Pept. Sci., 16, No. 5, pp. 406-412. doi: https://doi.org/10.2174/1389203716666150330125439
Atici, Ö., Ağar, G. & Battal, P. (2005). Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol. Plant., 49, Iss. 2, pp. 215-222. doi: https://doi.org/10.1007/s10535-005-5222-9
Wybouw, B. & De Rybel, B. (2019). Cytokinin — a developing story. Trends in plant. Science, 24, Iss. 2, pp. 177-185. doi: https://doi.org/10.1016/j.tplants.2018.10.012
Dempsey, D. A. & Klessig, D. F. (2017). How does the multifaceted plant hormone salicylic acid combat disea se in plants and are similar mechanisms utilized in humans? BMC Biol., 15. doi: https://doi.org/10.1186/s12915-017-0364-8
Trinh, N.N., Huang, T.L., Chi, W.C., Fu, S.F., Chen, C.C. & Huang, H.J. (2014). Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol. Plant., 150, pp. 205-224. doi: https://doi.org/10.1111/ppl.12088
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2024 Доповіді Національної академії наук України
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.