METHODS FOR SYNTHESIZING FUNCTIONALIZED CYCLIC ENAMINITRILES

Authors

DOI:

https://doi.org/10.15407/dopovidi2025.05.003

Keywords:

pyrrolidinylidene, hetarylacetonitriles, heterocycles, imidoyl chlorides, heterocyclization recyclization, cyclization

Abstract

A number of effective approaches to the synthesis of 2-hetaryl-2-(1-aryl(hetaryl)pyrrolidin-2-ylidene)acetonitriles have been developed. The methods are based on various ways of constructing the pyrrolidinylidene ring. These include the recycling of 2-hetaryl-2-(tetrahydro-2-furanilidene)acetonitriles upon interaction with aromatic amines, as well as the condensation of alicyclic and cyclic imidoyl chlorides with hetarylacetonitriles. The ap- proaches studied allow for variation in both the structure of the hetarylacetonitrile fragment and the structure of the N-substituents of the pyrrolidin ring, including electron-rich and heteroaromatic ones. The structure of the obtained compounds has been established and confirmed by NMR spectroscopy. Pyrrolidine-containing com- pounds have a wide spectrum of pharmacological activity, therefore the obtained products can be considered promising compounds for biological screening.

Downloads

Download data is not yet available.

References

Bhat, A. A., Singh, I., Tandon, N. & Tandon, R. (2023). Structure activity relationship (SAR) and anticancer activity of pyrrolidine derivatives: Recent developments and future prospects (A review). Eur. J. Med. Chem. 246, 114954. https://doi.org/10.1016/j.ejmech.2022.114954

Finiuk, N., Kryshchyshyn-Dylevych, A., Holota, S., Klyuchivska, O., Kozytskiy, A., Karpenko, O., Manko, N., Ivasechko, I., Stoika, R. & Lesyk, R. (2022). Novel hybrid pyrrolidinedione-thiazolidinones as potential anticancer agents: Synthesis and biological evaluation. Eur. J. Med. Chem., 238, 114422. https://doi.org/10.1016/j. ejmech.2022.114422

Hassan, A. H. E., Park, H. R., Yoon, Y. M., Kim, H. I., Yoo, S. Y., Lee, K. W. & Lee, Y. S. (2019). Antiproliferative 3-deoxysphingomyelin analogs: Design, synthesis, biological evaluation and molecular docking of pyrrolidine- based 3-deoxysphingomyelin analogs as anticancer agents. Bioorg. Chem., 84, pp. 444-455. https://doi. org/10.1016/j.bioorg.2018.11.040

Fatahala, S. S., Hasabelnaby, S., Goudah, A., Mahmoud, G. I. & Abd-El Hameed, R. H. (2017). Pyrrole and fused pyrrole compounds with bioactivity against inflammatory mediators. Molecules, 22, No. 3, 461. https://doi. org/10.3390/molecules22030461

Yao, C.-P., Zou, Z.-X., Zhang, Y., Li, J., Cheng, F., Xu, P.-S., Zhou, G., Li, X.-M., Xu, K.-P. & Tan, G.-S. (2019).

New adenine analogues and a pyrrole alkaloid from Selaginella delicatula. Nat. Prod. Res., 33, No. 14, pp. 1985- 1991. https://doi.org/10.1080/14786419.2018.1482892

Liu, P., Yang, Y., Ju, Y., Tang, Y., Sang, Z., Chen, L., Yang, T., An, Q., Zhang, T. & Luo, Y. (2018). Design, synthesis and biological evaluation of novel pyrrole derivatives as potential ClpP1P2 inhibitor against Mycobacterium tuberculosis. Bioorg. Chem., 80, pp. 422-432. https://doi.org/10.1016/j.bioorg.2018.06.004

Aboul-Enein, M. N., El-Azzouny, A. A. E.-S., Saleh, O., Maklad, Y. A., Aboutabl, M. E. & El-Din, M. M. G. (2016). Synthesis, bio-evaluation and molecular modeling studies of (2S)-1-[({[1-substituted cyclohexyl] methyl}amino)acetyl]pyrrolidine-2-carbonitriles for their DPP-4 inhibiting activity. Int. J. Pharm. Sci. Rev. Res., 39, No. 2, pp. 230-240.

Shemehen, R., Khilya, О. & Volovenko, Yu. (2020). Reaction of 2-hetaryl-2-(dihydrofuran-2(3H)-iliden) acetonitriles with aromatic amines. Bulletin of Taras Shevchenko National University of Kyiv, Chemistry, No. 1 (57), pp. 42-46 (in Ukrainian). https://doi.org/10.17721/1728-2209.2020.1(57).12

Eilingsfeld, H., Seefelder, M. & Weidinger, H. (1960). Amidchloride und carbamidchloride. Angew. Chem., 72, No. 22, pp. 836-845. https://doi.org/10.1002/ange.19600722

Zhaowen, L., Li, Z., Chunfen, X., Yong, Y., Fanbo, Z. & Kaixun, H. (2007). Anticancer activities of some arylca rbamoylalkyltriphenylphosphonium chlorides. Med. Chem. Res., 16, No. 7-9, pp. 380-391. https://doi. org/10.1007/s00044-007-9050-7

El-Ahmad, Y., Maillet, P., Laurent, E., Talab, A., Tran, G. & Ollivier, R. (1997). Synthesis of 1-[ω-[(arylamino) carbonyl]-alkyl]-4-(benzocycloalkyl)piperazines. HETEROCYCLES, 45, No. 4, pp. 723-734. https://doi. org/10.3987/com-97-7736

Lebedev, A. T., Mazur, D. M., Kudelin, A. I., Fedotov, A. N., Gloriozov, I. P., Ustynyuk, Yu. A. & Artaev, V. B. (2016). Cyclization of N-arylcyclopropanecarboxamides into N-arylpyrrolidin-2-ones under electron ionization and in the condensed phase. Rapid Commun. Mass Spectrom., 30, No. 22, pp. 2416-2422. https://doi. org/10.1002/rcm.7717

Published

29.10.2025

How to Cite

Shemehen, R., & Khilya, O. (2025). METHODS FOR SYNTHESIZING FUNCTIONALIZED CYCLIC ENAMINITRILES. Reports of the National Academy of Sciences of Ukraine, (5), 3–12. https://doi.org/10.15407/dopovidi2025.05.003