Зміни іоному генетично модифікованих рослин кукурудзи з дволанцюговим РНК-супресором гена проліндегідрогенази
DOI:
https://doi.org/10.15407/dopovidi2019.07.097Ключові слова:
siРНК, іоном, кукурудза, осмотолерантність, трансгенезАнотація
Досліджено іоном трансгенних рослин кукурудзи з дволанцюговим (ds)РНК-супресором гена проліндегідрогенази, отриманих шляхом Agrobacterium-опосередкованої трансформації in planta рослин інбредної лінії 370 селекції Інституту фізіології рослин і генетики НАН України. Аналіз насіннєвого Т3-покоління рослин кукурудзи з частковою супресією активності проліндегідрогенази та підвищеною стійкістю до осмотичних стресів показав диференційні зміни окремих компонентів іоному: підвищення вмісту елементів Mg, Mn, Fe, Cu і Mo на фоні зниження вмісту Са, К та Na й істотне зниження рівня іонів важких металів: Ni, Ba, Cd, Sr. Зростання вмісту неорганічних складових редокс-компонентів — Mn, Cu, Fe, за винятком Zn, є важливим для формування підвищеної осморезистентності. Можна передбачити, що кількісні зміни неорганічних компонентів редокс-систем у генетично модифікованих рослин можуть бути складовою підвищеної стійкості до осмотичного стресу. Підвищення осморезистентності кукурудзи уможливить впровадження систем мінерального живлення з високим рівнем засвоєння окремих іонів, які побудовані на зростанні локальних концентрацій окремих елементів та відрізняються підвищеним рівнем резистентності до нестачі вологи. Завдяки зниженню вмісту ряду важких металів стане можливим більш широко використовувати у системах живлення фосфорні добрива, які можуть бути небезпечними щодо забруднення ґрунтів та рослин важкими металами.
Завантаження
Посилання
Salt, D. E., Baxter, I. & Lahner, B. (2008). Ionomics and the study of the plant ionome. Annu. Rev. Plant Biol., 59, pp. 709-733. doi: https://doi.org/10.1146/annurev.arplant.59.032607.092942
Baxter, I. & Dilkes, B. P. (2012). Elemental profiles reflect plant adaptations to the environment. Science, 336, Iss. 6089, pp. 1661-1663. doi: https://doi.org/10.1126/science.1219992
Williams, L. & Salt, D. E. (2009). The plant ionome coming into focus. Curr. Opin. Plant Biol., 12, No. 3, pp. 247-249. doi: https://doi.org/10.1016/j.pbi.2009.05.009
Huang, X.-Y. & Salt, D. E. (2016). Plant ionomics: From elemental profiling to environmental adaptation. Mol. Plant., 9, Iss. 6, pp. 787-797. doi: https://doi.org/10.1016/j.molp.2016.05.003
Pokhylko, S. Yu., Schwartau, V. V., Mykhalska, L. M., Dugan, O. M., & Morgan, B. V. (2016). ICP-MS analysis of bread wheat carrying the GPC-B1 gene of Triticum turgidum ssp. dicoccoides. Biotechnologia acta, 9, No. 5, pp. 64-69. doi: https://doi.org/10.15407/biotech9.05.065
Chumakov, M. I., Rozhok, N. A., Veliko, V. A., Tyrnov, V. S. & Volokhina, I. V. (2006). Agrobacterium-mediated in planta transformation of maize via pistil filaments. Russ. J. Genet., 42, No. 8, pp. 893-897. doi: https://doi.org/10.1134/S1022795406080072
Tishchenko, O. M., Komisarenko, А. G., Mykhalska, S. I., Sergeeva, L. E., Adamenko, N. I., Morgun, B. V. & Kochetov, A. V. (2014). Agrobacterium-mediated sunflower transformation (Helianthus annuus L.) in vitro and in planta using strain of LВА4404 harboring binary vector pBi2E with dsRNA-suppressor proline dehydrogenase gene. Tsitol. Genet., 48, No. 4, pp. 19-30 (in Russian). doi: https://doi.org/10.3103/S0095452714040094
Mykhalska, S. I., Sergeeva, L. E., Matveeva, А. Yu., Kobernyk, N. I., Kochetov, A. V., Tishchenko, O. M. & Morgun, V. V. (2014). The elevation of free proline content in osmotolerant transgenic corn plants with dsRNA suppressor of proline dehydrogenase gene. Fiziologiya rastenii i genetika, 46, No. 6, pp. 482-489 (in Russian).
Morgun, B. V. & Tishchenko, O. M. (2014). Molecular biotechnology to improve the sustainability of cultural cereals to osmotic stress. Kyiv: Logos (in Russian).
Morgun, V. V., Dubrovna, О. V. & Morgun, B. V. (2016). The modern biotechnologies of producing wheat plants resistant to stresses. Fiziologiya rastenii i genetika, 48, No. 3, pp. 196-214 (in Ukrainian). doi: https://doi.org/10.15407/frg2016.03.196
Brodersen, P. & Voinnet O. (2006). The diversity of RNA silencing pathways in plants. Trends Genet., 22, No. 5, pp. 268-280. doi: https://doi.org/10.1016/j.tig.2006.03.003
Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R. & Zhu, J. K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123, pp. 1279-1291. doi: https://doi.org/10.1016/j.cell.2005.11.035
Hamilton, A. J. & Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286, No. 5441, pp. 950-952. doi: https://doi.org/10.1126/science.286.5441.950
Yin, X.-Y., Yang, A.-F., Zhang, K.-W. & Zhang, J.-R. (2004). Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot. Sin., 46, No. 7, pp. 854-861.
Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302, No. 1, pp. 1-17. doi: https://doi.org/10.1007/s11104-007-9466-3
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2024 Доповіді Національної академії наук України

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.