Чисельне моделювання коливань тришарової конічної оболонки з дискретно-симетричним неоднорідним заповнювачем
DOI:
https://doi.org/10.15407/dopovidi2020.08.035Ключові слова:
дискретно-симетричний легкий заповнювач, нестаціонарне навантаження, нові механічні ефекти, тришарова конічна оболонкаАнотація
Постійний інтерес до широкого використання і створення сучасних конструкційних матеріалів часто призводить до необхідності одночасного виконання цілого ряду, часом суперечливих, вимог до багатошарових конструкцій, в яких кожен шар виконує тільки одну або краще кілька функцій. При цьому шари можуть відрізнятися як за товщиною, так і за фізико-механічними властивостями, тобто пакет може бути істотно неоднорідним. Ефективна несуча здатність тришарових оболонкових конструкцій з легким заповнювачем при достатній легкості робить їх дуже корисними в різних інженерних додатках. Експериментально доведено, що армування легкого заповнювача дискретно-симетричними жорсткими елементами значно підвищує міцність і стійкість тришарових структур на стиск. Безперервна розробка нових конструкційних матеріалів все більш ускладнює структурні конструкції, що вимагають ретельного аналізу. Одним з поширених елементів зазначених оболонкових конструкцій є тришарові конічні оболонки, які піддаються нестаціонарним навантаженням. Достатня кількість публікацій присвячена дослідженню динаміки тришарових оболонок [1]. Однак останнім часом створення об'єктів спеціального призначення тощо вимагає розробки конструктивних тришарових оболонкових елементів з заповнювачем ускладненої геометричної структури [2]. Питання динамічної поведінки таких оболонок вивчені недостатньо. У даній роботі кінематичні і статичні гіпотези застосовуються до кожного шару оболонок, що підвищує загальний порядок системи рівнянь, але це дозволяє детальніше вивчити динамічну поведінку тришарової структури. В основу рішення задачі покладена теорія оболонок і стрижнів, заснована на зсувній моделі С.П. Тимошенка. Для виведення рівнянь коливань тришарової неоднорідної по товщині структури використовується варіаційний принцип стаціонарності Гамільтона—Остроградського. Чисельне моделювання динаміки тришарової конічної оболонки з дискретно-симетричним легким заповнювачем проведено скінчено-елементним методом. Наведено числові результати розв’язку конкретних задач і виявлені нові механічні ефекти.
Завантаження
Посилання
Lugovoi, P. Z. & Meish, V. F. (2017). Dynamics of inhomogeneous shell systems under nonstationary loading (survey). Int. Appl. Mech. 53, pp. 481-537.
Orlenko, S. P. (2020). Numerical simulation of the dynamics of a three-layer spherical shell with a discretely inhomogeneous filler. Dopov. Nac. akad. nauk. Ukr., No. 3, pp. 19-27. (in Ukrainian). https://doi.org/10.15407/dopovidi2020.03.019
Timoshenko, S. P. & Woinowsky-Krieger, S. (1959). Theory of Plates and Shells. Second Edition. New York etc.: McGraw-Hill Book Company INC.
Frostig, Y. & Thomsen, O. T. (2004). Higher-order free vibration of sandwich panels with a flexible core. Int. J. of Solids and Structures. No. 41, pp. 1697-1724. https://doi.org/10.1016/j.ijsolstr.2003.09.051
Kheirikhah, M. M., Khalili, SMR & Malekzadeh Fard K. (2012). Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory. Eur. J. Mechanics A/Solids, 31, No. 1, pp. 54-66.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Доповіді Національної академії наук України
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.