Логарифмічна ємність і задачі Рімана та Гільберта для узагальнених аналітичних функцій
DOI:
https://doi.org/10.15407/dopovidi2020.08.011Ключові слова:
крайові задачі Рімана і Гільберта, логарифмічна ємність, узагальнені аналітичні функціїАнотація
Вивчення задачі Діріхле з довільними вимірюваними граничними даними для гармонічних функцій в одиничному крузі має витоки з відомої дисертації Лузіна. Пізніше Векуа дослідив узагальнені аналітичні функції, але тільки для граничних даних, неперервних за Гельдером. Ця робота містить теореми існування некласичних розв’язків задач Рімана і Гільберта для узагальнених аналітичних функцій з джерелом, граничні дані яких є вимірюваними відносно логарифмічної ємності. Наш підхід заснований на геометричній інтерпретації граничних значень на відміну від класичного операторного підходу в теорії рівнянь з частинними похідними. На цій основі можна отримати відповідні теореми існування задачі Пуанкаре для похідної за напрямком для рівняння Пуассона і, зокрема, для задачі Неймана з довільними граничними даними, вимірюваними відносно логарифмічної ємності. Ці результати можуть бути застосовані до напівлінійних рівнянь математичної фізики в анізотропних і неоднорідних середовищах.
Завантаження
Посилання
Vekua, I. N. (1962). Generalized analytic functions. Oxford, London, New York, Paris: Pergamon Press.
Luzin, N. N. (1915). Integral and trigonometric series. (Unpublished Doctor thesis). Moscow University, Moscow, Russia (in Russian).
Luzin, N. N. (1951). Integral and trigonometric series. Editing and commentary by Bari, N. K. & Men’shov, D.E. Moscow, Leningrad: Gostehteoretizdat (in Russian).
Gutlyanskii, V., Nesmelova, O. & Ryazanov, V. (2019). To the theory of semilinear equations in the plane. J. Math. Sci., 242, No. 6, pp. 833-859. https://doi.org/10.1007/s10958-019-04519-z
Efimushkin, A. S. & Ryazanov, V. I. (2015). On the Riemann-Hilbert problem for the Beltrami equations in quasidisks. J. Math. Sci., 211, No. 5, pp. 646-659. https://doi.org/10.1007/s10958-015-2621-0
Yefimushkin, A. & Ryazanov, V. (2016) On the Riemann-Hilbert problem for the Beltrami equations. In Complex analysis and dynamical systems VI. Part 2 (pp. 299-316). Contemporary Mathematics, 667. Israel Math. Conf. Proc. Providence, RI: Amer. Math. Soc. https://doi.org/10.5186/aasfm.2020.4552
Gutlyanskii, V. Ya., Ryazanov, V. I., Yakubov, E. & Yefimushkin, A. S. (2019). On the Hilbert problem for analytic functions in quasihyperbolic domains. Dopov. Nac. akad. nauk Ukr., No. 2, pp. 23-30. https://doi.org/10.15407/dopovidi2019.02.023
Gehring, F. W. & Martio, O. (1985). Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10, pp. 203-219. https://doi.org/10.5186/aasfm.1985.1022
Gutlyanskii, V. Ya., Ryazanov, V. I., Yakubov, E. & Yefimushkin, A. S. (2019). On boundary-value problems in domains without (A)-condition. Dopov. Nac. akad. nauk Ukr., No. 3, pp. 17-24. https://doi.org/10.15407/dopovidi2019.03.017
Gutlyanskii, V., Ryazanov, V., Yakubov, E. & Yefimushkin, A. (2020). On Hilbert boundary value problem for Beltrami equation. Ann. Acad. Sci. Fenn. Math., 45, pp. 957-973. https://doi.org/10.5186/aasfm.2020.4552
Bagemihl, F. & Seidel, W. (1955). Regular functions with prescribed measurable boundary values almost everywhere. Proc. Natl. Acad. Sci. U.S.A., 41, pp. 740-743. https://doi.org/10.1073/pnas.41.10.740
Gutlyanskii, V., Ryazanov, V. & Yefimushkin, A. (2016). On the boundary-value problems for quasiconformal functions in the plane. J. Math. Sci., 214, No. 2, pp. 200-219. https://doi.org/10.1007/s10958-016-2769-2
Federer, H. (1969). Geometric Measure Theory. Berlin: Springer.
Krasnosel’skii, M. A., Zabreyko, P. P., Pustyl’nik, E. I. & Sobolevski, P. E. (1976). Integral operators in spaces of summable functions. Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis. Leiden: Noordhoff International Publishing.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Доповіді Національної академії наук України
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.