Silica effects on spectral and photophysical properties of rhodamine 6G in polyurethane matrix

Authors

  • T.V. Bezrodna Institute of Physics of the NAS of Ukraine, Kiev
  • O.I. Antonenko Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv
  • L.F. Kosyanchuk Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv
  • O.M. Roshchin Institute of Physics of the NAS of Ukraine, Kiev
  • V.I. Bezrodnyi Institute of Physics of the NAS of Ukraine, Kiev
  • A.M. Negriyko Institute of Physics of the NAS of Ukraine, Kiev
  • A.O. Yaskovets Institute of Physics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2019.07.036

Keywords:

aerosil, luminescence, photostability, polyurethane acrylate, rhodamine 6G

Abstract

The organo-inorganic nanocomposite based on rhodamine 6G with xanthene dye and polyurethane acrylate doped with silicon dioxide has been developed. Spectral and photophysical properties of the dye in the polymer matrix have been investigated in the dependence on the concentration of SiO2 nanoparticles (1, 2, 4, and 8 mass. %). Aerosil concentration growth results in an increase of the R6G monomer–dimer ratio, which is seen on the absorption curves as an intensification of the spectral peak at 535 nm (a monomer state) relative to the spectral component at 505 nm (an aggregated state of the H-type). Adding the SiO2 nanoparticles to the polymer matrix enhances the dye luminescence intensity almost twice for a SiO2 concentration of 8 mass. %. This effect is caused by a decrease of the dimer luminescence reabsorption, since the dimer amount is smaller in the orga noinorganic nanocomposite, compared to the pure PUA. The photostability growth is observed for the R6G dye in the PUA polymer matrix doped with aerosil nanoparticles. Application of the organo-inorganic materials with the SiO2 concentration in polyurethane acrylate up to 8 mass % is shown to be promising for the development of efficient active elements for the dye lasers, pumped by the second harmonic of a neodymium laser.

Downloads

Download data is not yet available.

References

Bondar, M. V. & Przhonska, O. V. (1998). Spectral-luminescence and lasing properties of the pyrromethene dye PM-567 in ethanol and in a polymer matrix. Quant. Electron., 28, No. 9, рр. 753-756. doi: https://doi.org/10.1070/QE1998v028n09ABEH001318

Nikolaev, S. V., Pozhar, V. V., Dzyubenko, M. I. & Nikolaev, K. S. (2018). Solid active media for tunable lasers on the basis of dye-doped polyuretanes. Radiofizika i elektronika, 28, No. 9, рр. 753-756 (in Russian). doi: https://doi.org/10.15407/rej2018.04.095

Bezrodnyi, V. I., Stratilat, M. S., Negriyko, A. M., Kosyanchuk, L. F., Klishevich, G. V. & Todosiichuk, T. T. (2013). Effects of an aliphatic polyurethane matrix on spectral and photophysical characteristics of laser dyes. Dopov. Nac. akad. nauk. Ukr., No. 7, рp. 108-113 (in Russian).

Bezrodnyi, V. I., Negriyko, A. M. & Kosyanchuk, L. F. (2016). Investigations of passive Q-switching in YAG:Nd lasers with Q-switches based on dye-doped polyurethane matrices. Dopov. Nac. akad. nauk. Ukr., No. 9, рp. 61-68 (in Russian). doi: https://doi.org/10.15407/dopovidi2016.09.061

Suratwala, T., Gardlund, Z., Davidson, K. & Uhlmann, D. R. (1998). Silylated coumarin dyes in sol-gel hosts. 2. Photostability and sol-gel processing. Chem. Mater., 10, No. 1, pp. 199-209. doi: https://doi.org/10.1021/cm970340s

Kosyanchuk, L., Bezrodna, T., Stratilat, M., Menzheres, G., Kozak, N. & Todosiichuk, T. (2014). Peculiarities of interactions between 6-aminophenalenone dye and polyurethane matrix. J. Polym. Res., No. 21, pp. 564-570. doi: https://doi.org/10.1007/s10965-014-0564-7

Al Dwayyan, A. S., Qaid Saif, M. H., Majeed Khan, M. A. & Al Salhi, M. S. (2012). Structural and spectral investigations of Rhodamine (Rh6G) dye-silica core–shell nanoparticles. Optical Materials, 34, No. 5, pp. 761-768. doi: https://doi.org/10.1016/j.optmat.2011.11.003

Bezkrovnaya, O. N., Pritula, I. M., Puzikov, V. M., Maslov, V. V., Kolybaeva, M. I., Gurkalenko, Yu. A., Vovk, O. M., Lopyn, A. V. & Plaksii, A. G. (2010). SiO2-based active media with incorporated rhodamine and pyrenetetrasulfonic acid molecules. Nanosystems, Nanomaterials, Nanotechnologies, 8, No. 4, pp. 927-940. (in Russian).

Bezkrovnaya, O. N., Pritula, I. M., Plaksii, A. G., Puzikov, V. M., Gurkalenko, Yu. A., Kachkovskiy, A. D., Slominsky, Yu. L. & Kanaev, A. (2014). Spectral properties of nanoporous SiO2 matrices with polymethine dye molecules. Funct. Mater., 21, No. 1, pp. 36-41. doi: https://doi.org/10.15407/fm22.01.036

Pavlopoulos, T. G. (2002). Scaling of dye lasers with improved laser dyes. Progr. Quantum. Electron., 26, No. 4-5, pp. 193-224. doi: https://doi.org/10.1016/S0079-6727(02)00005-8

Bezrodnyi, V. I., Bondar, M. V. & Przhonska, O. V. (1990). Polymer lasers: photophysics of the active medium, optical schemes and generation parameters. Bulletin USSR Academy of Sciences. Phys. Ser., 54, No. 8, pp. 1476-1483. (in Russian).

Bezrodnyi, V. I., Stratilat, M. C., Kosyanchuk, L. F., Negriyko, A. M., Klishevich, G. V. & Todosiichuk, T. T. (2015). Spectral and photophysical properties of phenalenone dyes in aliphatic polyurethane matrix. Funct. Mater., 22, No. 2, pp. 212-218. doi: https://doi.org/10.15407/fm22.02.212

Chuichay, P., Vladimirov, E., Siriwong, K., Hannongbua, S. & Rösch, N. (2006). Molecular-dynamics simulations of pyronine 6G and rhodamine 6G dimers in aqueous solution. J. Mol. Model., No. 12, pp. 885-896. doi: https://doi.org/10.1007/s00894-005-0053-3

Reisfeld, R., Weiss, A., Saraidarov, T., Yariv, E. & Ishchenko, A. A. (2004). Solid-state lasers based on inorganic-organic hybrid materials obtained by combined sol–gel polymer Technology. Polym. Adv. Technol., No. 15, pp. 291-301. doi: https://doi.org/10.1002/pat.463

Published

21.04.2024

How to Cite

Bezrodna, T., Antonenko, O., Kosyanchuk, L., Roshchin, O., Bezrodnyi, V., Negriyko, A., & Yaskovets, A. (2024). Silica effects on spectral and photophysical properties of rhodamine 6G in polyurethane matrix . Reports of the National Academy of Sciences of Ukraine, (7), 36–43. https://doi.org/10.15407/dopovidi2019.07.036