KINETICS OF INTERACTION BETWEEN TITANIUM PT-4 AND VANADIUM NITRIDE UNDER MECHANOCHEMICAL ALLOYING CONDITIONS
DOI:
https://doi.org/10.15407/dopovidi2025.04.033Keywords:
mechanical alloying, hydride, nitride, crystal structure, X-ray diffractionAbstract
X-ray analysis of samples taken one hour after mechanochemical processing in a high-energy planetary mill of an equimolar mixture of PT-4 titanium powder and vanadium nitride (VN) powder was carried out. It was found that the starting material of PT-4 titanium is a mixture of titanium hydride (TiH2) powders (60 wt. %) and α-Ti (40 wt. %), and the starting vanadium nitride powder is single-phase and contains nitride of composition VN0.93. As a result of refining the crystal structures of the phases, it was shown that during the experiment (8 hours of mechanochemical treatment), the interaction between the charge components occurs in two stages. Namely, in the first stage of doping, some of the vanadium atoms leave the crystal structure of VN, which subsequently immerse into the tetrahedral pores of the rhombohedral deformed structure of TiH2. At the same stage, the process of destruction of the α-Ti structure apparently begins with the formation of titanium clusters in the reaction zone of the mill, which at the second stage of alloying occupy the formed vacancies of the VN structure. At the end of the experiment, the final product of mechanochemical alloying, in addition to α-Ti, contains the compound ~ TiV0.33H0.66 based on the TiH2 and a solid solution of the composition ~ V0.7Ti0.3N0.93 based on the VN. The material obtained will be compacted to study its properties and determine further prospects for its use in the manufacture of medical instruments.
Downloads
References
Long, M. & Rack, H. J. (1998). Titanium alloys in total joint replacement — a materials science perspective. Biomaterials, 19, No. 18, pp. 1621-1639. https://doi.org/10.1016/s0142-9612(97)00146-4
Gonçalves, V. R. M., Corrêa, D. R. N., de Sousa, T. S. P., Pintão, C. A. F., Grandini, C. R., Afonso, C. R. M. & Lisboa-Filho, P. N. (2024). Promising composites for wear resistant load-bearing implant applications: Low elastic moduli of β Ti—Nb alloy reinforced with TiC particles and/or TiB whiskers. J. Mater. Res. Technol., 30, pp. 879-889. https://doi.org/10.1016/j.jmrt.2024.03.135
Wang, S., Yu, X., Zhang, J., Wang, L., Leinenweber, K., He, D. & Zhao, Y. (2016). Synthesis, hardness, and elec- tronic properties of stoichiometric VN and CrN. Cryst. Growth Des., 16, No. 1, pp. 351-358. https://doi. org/10.1021/acs.cgd.5b01312
Yang, C., Yu, H., Gao, Y., Guo, W., Li, Z., Chen, Y., Pan, Q., Ren, M., Han, X. & Guo, C. (2019). Surface-engi- neered vanadium nitride nanosheets for an imaging-guided photothermal/photodynamic platform of cancer treatment. Nanoscale, 11, No. 4, pp. 1968-1977. http://dx.doi.org/10.1039/C8NR08269C
Bautista-Ruiz, J., Elhadad, A. & Aperador, W. (2024). Fabrication of silver-doped titanium vanadium nitride (TiVN) coatings for biomedical applications. Mater. Chem. Phys., 326, 129856. https://doi.org/10.1016/j. matchemphys.2024.129856
Bilyavina, N. M., Kuryliuk, V. V., Dibrov, V. V. & Kuryliuk, A. M. (2025). Mechanical alloying of equimolar TiC–VN and TiN–VN blends. Metallofiz. Noveishie Tekhnol., 47, No. 1, pp. 25-38. https://doi.org/10.15407/ mfint.47.01.0025
Belyavina, N. M., Turkevich, V. Z., Kuryliuk, A. M., Stratiichuk, D. A. & Nakonechna, O. I. (2024). Formation of multicomponent solid solutions in cBN—TiC—VN—Al system at high pressure composite sintering. Do- pov. Nac. akad. nauk Ukr., No. 4, pp. 33-47 (in Ukrainian). https://doi.org/10.15407/dopovidi2024.04.033
Avramenko, T. G., Kuryliuk, A. M., Nakonechna, O. I. & Belyavina, N. N. (2022). Effect of TEG on oxidation of TiC–ZrC equimolar blend at mechanical alloying. Metallofiz. Noveishie Tekhnol., 44, No. 6, pp. 713-https:// doi.org/10.15407/mfint.44.06.0713
Dashevskyi, M., Boshko, О., Nakonechna, O. & Belyavina, N. (2017). Phase transformations in equiatomic Y—Cu powder mixture at mechanical milling. Metallofiz. Noveishie Tekhnol., 39, No. 4, pp. 541-552. https:// doi.org/10.15407/mfint.39.04.0541
Wang, H. T., Lefler, M., Fang, Z. Z., Lei, T., Fang, S. M., Zhang, J. M. & Zhao, Q. (2010). Titanium and titanium alloy via sintering of TiH2. Key Eng. Mater., 436, pp. 157-163. https://doi.org/10.4028/www.scientific.net/kem.436.157
Kuang, F., Pan, Y., Sun, J., Liu, Y., Lei, C. & Lu, X. (2024). Investigating phase transformation, densification and
diffusion mechanism of TiH2 powder to achieve a high ductile Ti6Al4V alloy. J. Mater. Process. Technol., 329, 118459. https://doi.org/10.1016/j.jmatprotec.2024.118459
Gu, Y. W., Yong, M. S., Tay, B. Y. & Lim, C. S. (2009). Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2. Mater. Sci. Eng. C., 29, No. 5, pp. 1515-1520. https://doi.org/10.1016/j.msec.2008.11.003
Schultz, P. A. & Snow, C. S. (2016). Mechanical properties of metal dihydrides. Modelling Simul. Mater. Sci.
Eng., 24, No. 3, 035005. https://doi.org/10.1088/0965-0393/24/3/035005
Dubrovinskaia, N. A., Dubrovinsky, L. S., Saxena, S. K., Ahuja, R. & Johansson, B. (1999). High-pressure study of titanium carbide. J. Alloys Compd., 289, No. 1-2, pp. 24-27. https://doi.org/10.1016/S0925-8388(99)00159-0
Roldán, M. A., Alcalá, M. D. & Real, C. (2012). Characterisation of ternary TixV1−xNy nitride prepared by mechanosynthesis. Ceram. Int., 38, No. 1, pp. 687-693. https://doi.org/10.1016/j.ceramint.2011.07.057
Nakonechna, O., Belyavina, N., Kuryliuk, A., Kogutyuk, P., Stratiichuk, D. & Turkevich, V. (2023). Formation of nanoscale (Ti,V)N solid solutions form equimolar TiN/VN blend at mechanical alloying or HPHT sintering. Mater. Proc., 14, No. 1, 16. https://doi.org/10.3390/IOCN2023-14518
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

