SYNTHESIS AND IN SILICO STUDY OF 4-AMINO-2,3,3,5-TETRASUBSTITUTED-2,3-DIHYDROISOTHIAZOLE-1-OXIDES
DOI:
https://doi.org/10.15407/dopovidi2024.02.060Keywords:
sulfinamides, cyclization, bioisosteres, DFT calculationsAbstract
An efficient method for the synthesis of 4-amino-2-methyl-3,3-dialkyl-5-phenyl-2,3-dihydroisothiazole-1-oxides, including the ones with space-constrained spirocyclic substituents, has been developed. This class of compounds and in particular cyclic sulfinamides are considered as bioisosters of appropriately substituted lactams (cyclic amides). In silico studies and comparison of drug similarity parameters of model compounds showed that sulfinamide group (SO—N) is the closest equivalent of carboxamide group (CO—N) and can be considered as a new generation bioisosteric equivalent.
Downloads
References
Meanwell, N. A. (2011). Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 54, No. 8, pp. 2529-2591. https://pubs.acs.org/doi/10.1021/jm1013693
Langdon, S. R., Ertl, P. & Brown, N. (2010). Bioisosteric replacement and scaffold hopping in lead generation and optimization. Mol. Inform., 29, No. 5, pp. 366-385. https://doi.org/10.1002/minf.201000019
Wassermann, A. M. & Bajorath, J. (2011). Large-scale exploration of bioisosteric replacements on the basis of matched molecular pairs. Future Med. Chem., 3, No. 4, pp. 425-436. https://doi.org/10.4155/fmc.10.293
Schobert, R. & Schlenk, A. (2008). Tetramic and tetronic acids: an update on new derivatives and biological aspects. Bioorg. Med. Chem., 16, No. 8, pp. 4203-4221. https://doi.org/10.1016/j.bmc.2008.02.069
Panday, S. K. (2020). Pyroglutamic acid and its derivatives: the privileged precursors for the asymmetric syn- thesis of bioactive natural products. Mini-Rev. Org. Chem., 17, No. 6, pp. 626-646. https://doi.org/10.2174/157 0193x16666190917142814
Gualtieri, F., Manetti, D., Romanelli, M. N. & Ghelardini, C. (2002). Design and study of piracetam-like noot- ropics, controversial members of the problematic class of cognition-enhancing drugs. Curr. Pharm. Des., 8, No. 2, pp. 125-138. https://doi.org/10.2174/1381612023396582
Malykh, A. G. & Sadaie, M. R. (2010). Piracetam and piracetam-like. Drugs, 70, No. 3, pp. 287-312. https://doi. org/10.2165/11319230-000000000-00000
Dobrydnev, A. V., Popova, M. V. & Volovenko, Y. M. (2024). Cyclicsulfinamides. Chem. Rec., 24, No. 2, e202300221. https://doi.org/10.1002/tcr.202300221
Zheng, Y., Tice, C. M. & Singh, S. B. (2014). The use of spirocyclic scaffolds in drug discovery. Bioorg. Med. Chem. Lett., 24, No. 16, pp. 3673-3682. https://doi.org/10.1016/j.bmcl.2014.06.081
Dobrydnev, A. V., Popova, M. V., Yatsymyrskyi, A. V., Shishkina, S. V., Chuchvera, Y. O. & Volovenko, Y. M. (2024). A rationalization for the structure—activity relationship of α-functionalized β-enamino γ-sultams. J. Mol. Struct., 1295, No. 1, 136745. https://doi.org/10.1016/j.molstruc.2023.136745
Neese, F. (2022). Software update: the ORCA program system — Version 5.0. WIREs Comput. Mol. Sci., 12, No. 5, e1606. https://doi.org/10.1002/wcms.1606
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 4, 17. https://doi. org/10.1186/1758-2946-4-17
Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T. & Cao,
D. (2021). ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 49, No. W1, pp. W5—W14. https://doi.org/10.1093/nar/gkab255
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. (1997). Experimental and computational approach- es to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev., 23, No. 1-3, pp. 3-25. https://doi.org/10.1016/S0169-409X(96)00423-1
Padmaja, L., Ravikumar, C., Sajan, D., Joe, I. H., Jayakumar, V. S., Pettit, G. R. & Nielsen, O. F. (2009). Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spec- tra of the anticancer drug combretastatin-A2. J. Raman Spectrosc., 40, No. 4, pp. 419—428. https://doi. org/10.1002/jrs.2145
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.