The Bateman–Luke variational formalism in a sloshing with rotational flows
DOI:
https://doi.org/10.15407/dopovidi2016.04.030Keywords:
Bateman–Luke variational principle, Clebsch potentials, sloshingAbstract
Based on a presentation of the velocity field in terms of Clebsch potentials, the Bateman–Luke variational formalism is generalized for the sloshing of an ideal incompressible liquid with rotational flows.
Downloads
References
Bateman H. Partial differential equations of mathematical physics, New York: Dover, 1944.
Luke J. G. J. Fluid Mech., 1967, 27: 395–397. https://doi.org/10.1017/S0022112067000412
Faltinsen O. M., Timokha A. N. Sloshing, New York: Cambridge Univ. Press, 2009.
Lukovsky I. A. Nonlinear dynamics: Mathematical models for rigid bodies with a liquid, Berlin: de Gruyter, 2015.
Takahara H., Kimura K. J. Sound Vibr., 2012, 331, No 13: 3199–3212. https://doi.org/10.1016/j.jsv.2012.02.023
Prandtl L. ZAMM, 1949, 29, No 1/2: 8–9. https://doi.org/10.1002/zamm.19490290106
Hutton R. E. J. Appl. Mech., Trans. ASME, 1964, 31, No 1: 145–153.
Royon-Lebeaud A., Hopfinger E., Cartellier A. J. Fluid Mech., 2007, 577: 467–494. https://doi.org/10.1017/S0022112007004764
Clebsch A. J. Reine Angew. Math., 1857, 54: 293–313. https://doi.org/10.1515/crll.1857.54.293
Clebsch A. J. Reine Angew. Math., 1869, 56: 1–10.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.