Water purification from dyes by modified ceramic membranes made of clay minerals

Authors

  • T.Yu. Dulneva A. V. Dumansky Institute of Colloidal Chemistry and Water Chemistry of the NAS of Ukraine, Kiev
  • K. M. Chirkova A. V. Dumansky Institute of Colloidal Chemistry and Water Chemistry of the NAS of Ukraine, Kiev
  • D. D. Kucheruk A. V. Dumansky Institute of Colloidal Chemistry and Water Chemistry of the NAS of Ukraine, Kiev
  • V. V. Goncharuk A. V. Dumansky Institute of Colloidal Chemistry and Water Chemistry of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2016.01.110

Keywords:

cationic and the direct dyes, dynamic membrane, hydroxocomplexes Al3+, microfiltration, modification ceramic membranes, water purification

Abstract

The basic laws of the process of water purification from anionic and cationic dyes are identified by the example of direct scarlet and brilliant green by using domestic microfiltration tubular ceramic membranes based on clay minerals are modified by hydroxocomplexes Al3+. The high efficiency of water purification from direct scarlet in a wide pH range (4.8–9.5) and brilliant green in acidic (pH 4.8–5.2) and alkaline (pH 9.0–9.5) environments. The feasibility to use such membranes for the water purification from anionic and cationic dyes under certain conditions is substantiated.

Downloads

Download data is not yet available.

References

Baker R. W. Membrane Technology and Applications, Chichester: Wiley, 2004. doi: https://doi.org/10.1002/0470020393

The membranes and membrane technology, Ed. A. B. Yaroslavtsev, Moskva: Nauchnyi mir, 2013 (in Russian).

Isaeva V. I., Barkova M. I., Kucherov A. V. et al. Rossiiskie Nanotekhnologii, 2014, 9, No 7–8: 57–63 (in Russian); English translation: Isaeva V. I., Barkova M. I., Kucherov A. V. et al. Nanotechnologies in Russia, 2014, Vol. 9, 7: 416–422. doi: https://doi.org/10.1134/S1995078014040089

Gascon J., Aguado S., Kapteyijn F. Microporous Mesoporous Mater, 2008, 113: 132–138. doi: https://doi.org/10.1016/j.micromeso.2007.11.014

Rudenko L. I., Dzhuzha O. V., Han V. E. Radiochimiya, 2007, 49, No 1: 85–88 (in Russian).

Goncharuk V. V., Kucheruk D. D., Balakina M. N., Dulneva T. Y. Himiya i tehnologiya vody, 2009, 31, No 6: 688–702 (in Russian); English translation: Goncharuk V. V., Kucheruk D. D., Balakina M. N. et al. J. Water Chem. Technol., 2009, Vol. 31, 6: 396-404. doi: https://doi.org/10.3103/S1063455X09060083

Rudenko L. I., Dzhuzha O. V., Khan V. E., Koval'chuk S. I. Reports of the National Academy of Sciences of Ukraine, 2007, 6: 139–143 (in Ukrainian).

Dulneva T.Yu., Titoruk G. N., Kucheruk D. D., Goncharuk V. V. Himiya i tehnologiya vody, 2013, 35, No 4: 298–306 (in Russian); English translation: Dul’neva T. Y., Titoruk G. N., Kucheruk D. D. et al. J. Water Chem. Technol., 2013, 35, 4: 165-169. doi: https://doi.org/10.3103/S1063455X13040048

Kocharov P. G. Theoretical Foundations of reverse osmosis, Moskva: RHTU im. Mendeleeva, 2007 (in Russian).

Kucheruk D. D. Himiya i tehnologiya vody, 1991, 13, No 7: 664–669 (in Russian).

Karelin V. A. Water treatment. Physical and chemical bases of the processes of water treatment, Tomsk: Izd. Tomskogo Polytechnicheskogo Universiteta, 2012 (in Russian).

Published

29.09.2024

How to Cite

Dulneva, T., Chirkova, K. M., Kucheruk, D. D., & Goncharuk, V. V. (2024). Water purification from dyes by modified ceramic membranes made of clay minerals . Reports of the National Academy of Sciences of Ukraine, (1), 110–116. https://doi.org/10.15407/dopovidi2016.01.110

Most read articles by the same author(s)