Role of specific phospholipase D isoenzymes in biological action of jasmonic acid during plant stress responses

Authors

  • Ya.S. Коlesnikov V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry
  • S.V. Кretynin V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry

DOI:

https://doi.org/10.15407/dopovidi2018.10.095

Keywords:

Arabidopsis thaliana, cadmium, copper, isoenzyme, jasmonic acid, phosphatidic acid, phospholipase D, plants

Abstract

The aim of our investigation was to investigate the role of specific phospholipase D (PLD) isoenzymes in the biological action of jasmonic acid during plant responses to heavy metal stress. Plant growth responses and the PLD activity in vivo are analyzed in Arabidopsis thaliana transgenic plants in order to investigate the role of specific PLD isoenzymes in the biological action of jasmonic acid during the development of plant resistance to heavy metal (copper, cadmium) stress. The results suggest the participation of PLDb in early stages of the biological action of jasmonic acid.

Downloads

Download data is not yet available.

References

Dovgalyuk, A. (2013). Environmental contamination by toxic metals and its indication by plant test systems. Biol. studii, 7, No. 1, pp. 197-204 (in Ukrainian). doi: https://doi.org/10.30970/sbi.0701.269

Hong, Y., Zhao, J., Guo, L., Kim, S. C., Deng, X., Wang, G., Zhang, G., Li, M. & Wang, X. (2016). Plant phospholipases D and C and their diverse functions in stress responses (Review). Prog. Lipid Res., 62, pp. 55-74. doi: https://doi.org/10.1016/j.plipres.2016.01.002

Iakimova, E. T., Michaeli, R. & Woltering, E. J. (2013). Involvement of phospholipase D-related signal transduction in chemical-induced programmed cell death in tomato cell cultures. Protoplasma, 250, No. 5, pp. 1169-1183. doi: https://doi.org/10.1007/s00709-013-0497-8

Zhao, J., Wang, C., Bedair, M., Welti, R., Sumner, L. W., Baxter, I. & Wang, X. (2011). Suppression of phospholipase Dγs confers increased aluminum resistance in Arabidopsis thaliana. PLoS ONE, 6, No. 12, e28086. doi: https://doi.org/10.1371/journal.pone.0028086

Maksymiec, W. & Krupa, Z. (2002). Jasmonic acid and heavy metals in Arabidopsis plants — a similar physiological response to both stressors? J. Plant Physiol., 159, No. 5, pp. 509-515. doi: https://doi.org/10.1078/0176-1617-00610

Cenzano, A., Cantoro, R., Racagni, G., De Los Santos-Briones, C., Hernández-Sotomayor, T. & Abdala, G. (2008). Phospholipid and phospholipase changes by jasmonic acid during stolon to tuber transition of potato. Plant Growth Regul., 56, No. 3, pp. 307-316. doi: https://doi.org/10.1007/s10725-008-9311-6

Profotová, B., Burketová, L., Novotná, Z., Martinec, J. & Valentová, O. (2006). Involvement of phospholipases C and D in early response to SAR and ISR inducers in Brassica napus plants. Plant Physiol. Biochem., 44, No. 2-3, pp. 143-151. doi: https://doi.org/10.1016/j.plaphy.2006.02.003

Altúzar-Molina, A. R., Muñoz-Sánchez, J. A., Vázquez-Flota, F., Monforte-González, M., Racagni-Di Palma, G. & Hernández-Sotomayor, S. M. (2011). Phospholipidic signaling and vanillin production in response to salicylic acidand methyl jasmonate in Capsicum chinense J. cells. Plant Phys. Biochem., 49, No. 2, pp. 151-158. doi: https://doi.org/10.1016/j.plaphy.-2010.11.005

Chen, J., Sonobe, K., Ogawa, N., Masuda, S., Nagatani, A., Kobayashi, Y. & Ohta, H. (2013). Inhibition of arabidopsis hypocotyl elongation by jasmonates is enhanced under red light in phytochrome B dependent manner. J. Plant Res., 126, No. 1, pp. 161-168. doi: https://doi.org/10.1007/s10265-012-0509-3

Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, pp. 604-611. doi: https://doi.org/10.1007/s10265-012-0509-3

Pejchar, P., Potocký, M., Novotná, Z., Veselková, S., Kocourková, D., Valentová, O., Schwarzerová, K., Martinec, J. (2010). Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells. New Phytol., 188, pp. 150-160. doi: https://doi.org/10.1111/j.1469-8137.2010.03349.x

Maksymiec, W., Wójcik, M. & Krupa, Z. (2007). Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere, 66, No. 3, pp. 421-427. doi: https://doi.org/10.1007/s10265-012-0509-3

Zhao, J., Devaiah, S. P., Wang, C., Li, M., Welti, R. & Wang, X. (2013). Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. New Phytol., 199, No. 1, pp. 228-240. doi: https://doi.org/10.1111/nph.12256

Zhang, Q., Berkey, R., Blakeslee, J. J., Lin, J., Ma, X., King, H., Liddle, A., Guo, L., Munnik, T., Wang, X. & Xiao, S. (2018). Arabidopsis phospholipase Dα1 and Dδ oppositely modulate EDS1- and SA-independent basal resistance against adapted powdery mildew. J. Exp. Bot. doi: https://doi.org/0.1093/jxb/ery146

Published

20.05.2024

How to Cite

Коlesnikov Y., & Кretynin S. (2024). Role of specific phospholipase D isoenzymes in biological action of jasmonic acid during plant stress responses . Reports of the National Academy of Sciences of Ukraine, (10), 95–102. https://doi.org/10.15407/dopovidi2018.10.095