To a continual calculation model of stability of nanotubes with hemispherical end caps

Authors

  • N.P. Semenyuk S.P. Timoshenko Institute of Mechanics of the NAS of Ukraine, Kiev
  • V.M. Trach National University of Water and Environmental Engineering, Rivne
  • N.B. Zhukova S.P. Timoshenko Institute of Mechanics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2018.09.042

Keywords:

axial compression, carbon nanotube, external pressure, hemispherical end caps, stability, theory of shells

Abstract

A continual calculation model is offered to study the stability of carbon nanotubes. It is based on the non-linear theory of anisotropic shells with medium curvature. The calculations of critical states for nanotubes with hemispherical end caps and without them under different boundary conditions and different external loads are carried out.

Downloads

References

Guz, A. N., Rushchitsky, J. J. & Guz, I. A. (2010). Introduction in Mechanics of nanocomposites. Kiev: S.P. Timoshenko Institute of Mechanics (in Russian).

Elishakoff, I. & Pentaras, D. et al. (2012). Carbon nanotubes and Nanosensors: Vibration, Buckling and Ballistic Impact. Wiley-ISTE. doi: https://doi.org/10.1002/9781118562000

Ru, C. Q. (2000). Elastis buckling of singwalled carbon nanotubes ropes under hight pressure. Phis. Review, 62, pp. 10405-10408. doi: https://doi.org/10.1103/PhysRevB.62.10405

Semenyuk, N. P. (2016). Stability of double-walled carbon nanotubes revisited. Int. Appl. Mech., 52, No. 1, pp. 73-81. doi: https://doi.org/10.1007/s10778-016-0734-x

Shima, H. (2012). Buckling of Carbon Nanotubes: A State of the Art Review. Materials, 5, pp. 47-84. doi: https://doi.org/10.3390/ma5010047

Sears, A. & Batra, B. C. (2006). Buckling of multiwalled carbon nanotubes under axial compression. Phis. Review, B 73, pp. 1-11. doi: https://doi.org/10.1103/PhysRevB.73.085410

Thostenton, E. T., Li, C. & Chou, T.-W. (2005). Nanocomposites in context (review). Composites Science and Technology, 65, pp. 491-516. doi: https://doi.org/10.1016/j.compscitech.2004.11.003

Wang, C. M., Zhang, Y. Y., Xiang, Y. & Reddy, J. N. (2010). Recent Studies on Buckling of Carbon Nanotubes. Appl. Mechanics Reviews, 63, No. 3, pp. 1-18. doi: https://doi.org/10.1115/1.4001936

Wang, C. M., Tay, Z. Y., Chowdhuary, A. H., Duan, W. D., Zhang, Y. Y. & Silvestre, N. (2011). Examination of cylindrical shells theories for buckling of carbon nanotubes. Int. J. Struct. Stability and Dynamics, 11, No. 6, pp. 1035-1058. doi: https://doi.org/10.1142/S0219455411004464

Yakobson, B. I., Brabec, C. J. & Brabec, J. (1996). Nanomechanics of carbon tubes instabilities beyond linear response. Phys. Review Letters, 76, pp. 2511-2514. doi: https://doi.org/10.1103/PhysRevLett.76.2511

Bazhenov, V. A., Semenyuk, M. P. & Trach, V. M. (2010). Nonlinear deformation, stability and postbuckling behavior of anisotropic shells. Kiev: Caravela (in Ukrainian).

Vanin, G. A. & Semenyuk, N. P. (1987). Stability of shells made of composite materials with imperfections. Kiev: Naukova dumka (in Russian).

Lanczos, C. (1964). The Variational Principles of Mechanics. Univ. of Toronto Press.

Semenyuk, N. P. & Zhukova, N. B. (2016). Stability and Post-Buckling Behavior of Orthotropic Cylindrical Shells with Local Deflection. Int. Appl. Mech., 52, No. 3, pp. 290-300. doi: https://doi.org/10.1007/s10778-016-0752-8

Published

20.05.2024

How to Cite

Semenyuk, N., Trach, V., & Zhukova, N. (2024). To a continual calculation model of stability of nanotubes with hemispherical end caps . Reports of the National Academy of Sciences of Ukraine, (9), 42–50. https://doi.org/10.15407/dopovidi2018.09.042