Effect of modeled soil drought on lipoxygenase activity in Triticum spelta

Authors

  • L.M. Babenko M.G. Kholodny Institute of Botany of the NAS of Ukraine, Kiev
  • I.V. Kosakivska M.G. Kholodny Institute of Botany of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2018.08.098

Keywords:

drought, lipoxygenase, Triticum spelta L.

Abstract

The effect of a simulated moderate soil drought on the lipoxygenase (LOG) activity of Triticum spelta plants is studied. Three membrane-bound molecular forms of 9-LOG: LOG-1 (pHopt 5.5), LOG-2 (pHopt 5.8), and LOG-3 (pHopt 6.2) are identified in the above-ground part, in the roots — one 9-LOG (pHopt 6.0). It is shown that, under conditions of drought, the activity of LOG-2 and LOG-3 from the above-ground part increased by 120 and 190 %, respectively, whereas an increase in the activity of LOG-1 is less pronounced. The highest increase in the activity is recorded for 9-LOG localized in the root system of plants. The results obtained indirectly indicate that LOG is involved in the formation of a reaction-response in T. spelta plants under soil drought conditions. Differentiated involvement of the molecular forms of LOG in the adaptation of T. spelta plants to the conditions of water deficiency is discussed.

Downloads

Download data is not yet available.

References

Anjum, S. A., Xie, X., Wang, L., Saleem, M. F., Man, C. & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agr. Res., 6, No. 9. pp. 2026-2032.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev., 29, pp. 185-212. doi: https://doi.org/10.1051/agro:2008021

Theocharis, A., Clement, C., & Barka, E. A. (2012). Physiological and molecular changes in plants grown at low temperatures. Planta, 235, pp. 1091-1105. doi: https://doi.org/10.1007/s00425-012-1641-y

Savchenko, T. V., Zastrijnaja, O. M. & Klimov, V. V. (2014). Oxylipins and plant abiotic stress resistance. Biochemistry (Mosc.), 79, No. 4, pp. 362-375. doi: https://doi.org/10.1134/S0006297914040051

Babenko, L. M., Shcherbatiuk, M. M., Skaterna, T. D. & Kosakivska, I. V. (2017). Lipoxygenases and their metabolites in formation of plant stress tolerance. Ukr. Biochem.J., 89, No. 1, pp. 5-21. doi: https://doi.org/10.15407/ubj89.01.005

Andreou, A. & Feussner, I. (2009). Lipoxygenases – Structure and reaction mechanism. Phytochemistry, 70, No. 13-14, pp. 1504-1510. doi: https://doi.org/10.1016/j.phytochem.2009.05.008

Wasternack, C. & Song, S. (2017). Jasmonates: an update on biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot., 68, No. 6, pp.1303-1321.

Maccarrone, M., Veldink, G. A., Aghr ò , A. F. & Vliegenthart, J. F. G. (1995). Modulation of soybean lipoxygenase expression and membrane oxidation by water deficit. FEBS Lett., 371, No. 3, pp. 223-226. doi: https://doi.org/10.1016/0014-5793(95)00876-B

Zhang, H., Zhang, L., Lv, H., Yu, Z., Zhang, D. & Zhu, W. (2014). Identification of changes in Triticum aestivum L. leaf proteome in response to drought stress by 2D-PAGE and MALDI-TOF/TOF mass spectrometry. Acta Physiol Plant., 36, pp.1385-1398. doi: https://doi.org/10.1007/s11738-014-1517-9

Permyakova, M. D., Permyakov, A. V., Osipova, S . V. & Pshenichnikova, T. A. (2012). Lipoxygenase f rom the leaves of wheat grown under different water sup ply conditions. Appl. Biochem. Microbiol., 48, No. 1, pp. 77-82. doi: https://doi.org/10.1134/S0003683812010139

Liubych, V. V., Hospodarenko, H. M. & Poltoretskyi, S. P. (2017). Quality features of spelt wheat grain. Saarbrücken: LAP LAMBERT Acad. Publ.

Karabudak, T., Bor, M., Özdemir, F. & Türkan, İ . (2014). Glycine betaine protects tomato ( Solanum lycopersicum ) plants at low temperature by inducing fatty acid desaturase 7 and lipoxygenase gene expression. Mol. Biol. Rep., 41, pp.1401-1410. doi: https://doi.org/10.1007/s11033-013-2984-6

Kosakivska, I. V., Vasyuk, V. A., Babenko, L. M. & Voytenko, L. V. (2018). Drought stress effects on Triticum spelta L. structural and functional characteristics. J. Stress Physiol. Biochem., 14, No. 1, pp.12-18.

Babenko, L. M. (2018). The effect of stress temperatures on the activity of lipoxygenases in Triticum spelta . Bull. Kharkiv Nat. Agrar. Univ. Ser. Biol., 1, No. 43, pp.40-46.

Permyakova, M. D., Permyakov, A. V., Osipova, S. V., Pshenichnikova, T. A., Shishparenok, A. A., Rudikovskaya, E. G., Rudikovsky, A. V., Verkhoturov, V. V. & Börner, A. (2017). Chromosome regions associated with the activity of lipoxygenase in the genome D of Triticum aestivum L. under water deficit. Russ. J. Plant Physiol., 64, No. 1, pp 28-40. doi: https://doi.org/10.1134/S1021443717010113

Published

20.05.2024

How to Cite

Babenko, L., & Kosakivska, I. (2024). Effect of modeled soil drought on lipoxygenase activity in Triticum spelta . Reports of the National Academy of Sciences of Ukraine, (8), 98–104. https://doi.org/10.15407/dopovidi2018.08.098