Synthesis and structure of KInP2O7 obtained from K—In—P—Mo—O melts

Authors

  • D.V. Kyselov Taras Shevchenko National University of Kiev
  • K.V. Terebilenko Taras Shevchenko National University of Kiev
  • O.V. Petrenko Taras Shevchenko National University of Kiev
  • V.N. Baumer Taras Shevchenko National University of Kiev
  • M.S. Slobodyanik Taras Shevchenko National University of Kiev

DOI:

https://doi.org/10.15407/dopovidi2018.06.091

Keywords:

crystallization, indium, pyrophosphate, single crystal, X-ray diffraction

Abstract

The peculiarities of the crystallization from mixed phosphate — molybdate melts and the structure of KInP2O7 have been investigated. The compound crystallizes in a monoclinic system, space group P21/c(14),a=7.4092(1),b=10.3990(1),c=8.3966(1),β=106.23(0)°,V=621.16(36)Å3. The three-dimensional framework [InP2O7]∞ consists of isolated InO6 octahedra interlinked by six pyrophosphate groups. This type of architecture of the anionic sublattice forms hexagonal channels, where potassium cations are located. Doping the host studied with rare-earth metals would open a possibility of its practical application as a base of the phosphors.

Downloads

References

Pramanik, M., Salunkhe, R. R., Imura, M. & Yamauchi, Y. (2016). Phosphonate-derived nanoporous metal phosphates and their superior energy storage application. ACS Appl. Mater. Interfaces, 8, pp. 9790-9797. doi: https://doi.org/10.1021/acsami.6b01012

Li, X., Elshahawy, A. M., Guan, C. & Wang, J. (2017). Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small, 13, No. 39, 1701530. doi: https://doi.org/10.1002/smll.201701530

Clearfield, A. (1988). Role of ion exchange insolid-statechemistry. Chem. Rev., 88, No. 1, pp. 125-148. doi: https://doi.org/10.1021/cr00083a007

Hagerman, M. & Poeppelmeier, K. (1998). Noncentrosymmetric oxides. Chem. Mater., 10, pp. 2753-2769. doi: https://doi.org/10.1021/cm980140w

Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. & Adach,i G. (1993). The electrical properties of ceramic electrolytes for LiMxTi2 – x(PO4)3 + yLi2O, M = Ge, Sn, Hf , and Zr systems. Electrochem. Soc., 140, pp. 1827-1833. doi: https://doi.org/10.1002/chin.199345017

Boilot, J., Collin, G. & Colomban, P. (1988). Relation structure-fast ion conduction in the NASICON solid solution. Solid State Chem., 73, pp.160-163. doi: https://doi.org/10.1016/0022-4596(88)90065-5

Yongchun, Z., Wendan, C., Dongsheng, W., Hao, Z., Dagui, C., Yajing, G. & Zigui, K. (2004). Crystal and band structures, bonding, and optical properties of solid compounds of alkaline indium (III) pyrophosphates MInP2O7 (M = Na, K, Rb, Cs). Chem. Mater., 16, pp. 4150-4159. doi: https://doi.org/10.1021/cm0491330

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides. Acta Crystallogr. A, 32, No. 5, pp. 751-767. doi: https://doi.org/10.1107/S0567739476001551

Sheldrick, G. (1997). SHELXL–97: Program for crystalstructure refinement. Univ. of Gottingen.

Slobodyanik, M. S., Nagorny, P.G., Boyko, R. S. & Zaslavsky, O. M. (2013). Synthesis and crystal structure of alkali metal and gallium phosphates. Dopov. Nac. acad. nauk Ukr., No. 10, pp. 141-146 (in Ukrainian).

Strutynska, N. Yu., Baumer, V. N., Zatovsky, I. V., Babaryk, A. A. & Slobodyanik, N. S. (2010). The triple pyrophosphate Cs3CaFe(P2O7)2. Acta Crystallogr. S, 66, pp. i39-i41. doi: https://doi.org/10.1107/S0108270110007195

Published

15.05.2024

How to Cite

Kyselov, D., Terebilenko, K., Petrenko, O., Baumer, V., & Slobodyanik, M. (2024). Synthesis and structure of KInP2O7 obtained from K—In—P—Mo—O melts . Reports of the National Academy of Sciences of Ukraine, (6), 91–97. https://doi.org/10.15407/dopovidi2018.06.091

Most read articles by the same author(s)

1 2 3 > >>