General elliptic boundary-value problems in Hörmander—Roitberg spaces

Authors

  • T.M. Kasirenko Institute of Mathematics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2018.02.003

Keywords:

a priori estimate, elliptic problem, Fredholm operator, Hörmander space, regularity of a solution, RO-varying function

Abstract

We prove theorems on the character of solvability and regularity of solutions of general elliptic boundary-value problems in Hilbert Hörmander spaces modified by Roitberg. An arbitrary real number and a sufficiently general weight function of frequency variables serve as the indices of regularity for these spaces.

Downloads

Download data is not yet available.

References

Lions, J.-L. & Magenes, E. (1972). Non-homogeneous boundary-value problems and applications. Vol. 1. New York, Heidelberg: Springer.

Roitberg, Ya. A. (1996). Elliptic boundary value problems in the spaces of distributions. Dordrecht: Kluwer Acad. Publishers. doi: https://doi.org/10.1007/978-94-011-5410-9

Hörmander, L. (1963). Linear partial differential operators. Berlin: Springer. doi: https://doi.org/10.1007/978-3-642-46175-0

Mikhailets, V. A. & Murach, A. A. (2014). Hörmander spaces, interpolation, and elliptic problems. Berlin, Boston: De Gruyter. doi: https://doi.org/10.1515/9783110296891

Agranovich, M. S. (1997). Elliptic boundary problems. Encycl. Math. Sci. Vol. 79. Partial differential equations, IX. Berlin: Springer. doi: https://doi.org/10.1007/978-3-662-06721-5_1

Kozlov, V. A., Maz'ya, V. G. & Rossmann, J. (1997). Elliptic boundary value problems in domains with point singularities. Providence: Amer. Math. Soc.

Seneta, E. (1976). Regularly varying functions. Berlin: Springer. doi: https://doi.org/10.1007/BFb0079658

Volevich, L. R. & Paneah, B. P. (1965). Certain spaces of generalized functions and embedding theorems. Russ. Math. Surveys, 20, No. 1, pp. 1-73. doi: https://doi.org/10.1070/RM1965v020n01ABEH004139

Mikhailets, V. A. & Murach, A. A. (2006). Refined scales of spaces and elliptic boundary-value problems. II. Ukr. Math. J., 58, No. 3, pp. 398-417. doi: https://doi.org/10.1007/s11253-006-0074-9

Mikhailets, V. A. & Murach, A. A. (2013). Extended Sobolev scale and elliptic operators. Ukr. Math. J., 65, No. 3, pp. 435-447. doi: https://doi.org/10.1007/s11253-013-0787-5

Roitberg, Ja. A. (1964). Elliptic problems with non-homogeneous boundary conditions and local increase of smoothness of generalized solutions up to the boundary. Soviet. Math. Dokl., 5, pp. 1034-1038.

Mikhailets, V. A. & Murach, A. A. (2008). An elliptic boundary-value problem in a two-sided refined scale of spaces. Ukr. Math. J., 60, No. 4, pp. 574-597. doi: https://doi.org/10.1007/s11253-008-0074-z

Roitberg, Ja. A. (1970). Homeomorphism theorems and Green's formula for general elliptic boundary value problems with boundary conditions that are not normal. Sb. Math., 12, No. 2, pp. 177-212. doi: https://doi.org/10.1007/BF01085380

Kostarchuk, Ju. V. & Roitberg, Ja. A. (1973). Isomorphism theorems for elliptic boundary value problems with boundary conditions that are not normal. Ukr. Math. J., 25, No. 2, 222-226. doi: https://doi.org/10.1007/BF01096983

Kostarchuk, Ju. V. (1973). Local increase of the smoothness of generalized solutions to elliptic boundary value problems with boundary conditions that are not normal. Ukr. Mat. Zh., 25, No. 4, 536–540 (in Russian). doi: https://doi.org/10.1007/BF01096983

Published

09.05.2024

How to Cite

Kasirenko, T. (2024). General elliptic boundary-value problems in Hörmander—Roitberg spaces . Reports of the National Academy of Sciences of Ukraine, (2), 3–11. https://doi.org/10.15407/dopovidi2018.02.003