General elliptic boundary-value problems in Hörmander—Roitberg spaces
DOI:
https://doi.org/10.15407/dopovidi2018.02.003Keywords:
a priori estimate, elliptic problem, Fredholm operator, Hörmander space, regularity of a solution, RO-varying functionAbstract
We prove theorems on the character of solvability and regularity of solutions of general elliptic boundary-value problems in Hilbert Hörmander spaces modified by Roitberg. An arbitrary real number and a sufficiently general weight function of frequency variables serve as the indices of regularity for these spaces.
Downloads
References
Lions, J.-L. & Magenes, E. (1972). Non-homogeneous boundary-value problems and applications. Vol. 1. New York, Heidelberg: Springer.
Roitberg, Ya. A. (1996). Elliptic boundary value problems in the spaces of distributions. Dordrecht: Kluwer Acad. Publishers. doi: https://doi.org/10.1007/978-94-011-5410-9
Hörmander, L. (1963). Linear partial differential operators. Berlin: Springer. doi: https://doi.org/10.1007/978-3-642-46175-0
Mikhailets, V. A. & Murach, A. A. (2014). Hörmander spaces, interpolation, and elliptic problems. Berlin, Boston: De Gruyter. doi: https://doi.org/10.1515/9783110296891
Agranovich, M. S. (1997). Elliptic boundary problems. Encycl. Math. Sci. Vol. 79. Partial differential equations, IX. Berlin: Springer. doi: https://doi.org/10.1007/978-3-662-06721-5_1
Kozlov, V. A., Maz'ya, V. G. & Rossmann, J. (1997). Elliptic boundary value problems in domains with point singularities. Providence: Amer. Math. Soc.
Seneta, E. (1976). Regularly varying functions. Berlin: Springer. doi: https://doi.org/10.1007/BFb0079658
Volevich, L. R. & Paneah, B. P. (1965). Certain spaces of generalized functions and embedding theorems. Russ. Math. Surveys, 20, No. 1, pp. 1-73. doi: https://doi.org/10.1070/RM1965v020n01ABEH004139
Mikhailets, V. A. & Murach, A. A. (2006). Refined scales of spaces and elliptic boundary-value problems. II. Ukr. Math. J., 58, No. 3, pp. 398-417. doi: https://doi.org/10.1007/s11253-006-0074-9
Mikhailets, V. A. & Murach, A. A. (2013). Extended Sobolev scale and elliptic operators. Ukr. Math. J., 65, No. 3, pp. 435-447. doi: https://doi.org/10.1007/s11253-013-0787-5
Roitberg, Ja. A. (1964). Elliptic problems with non-homogeneous boundary conditions and local increase of smoothness of generalized solutions up to the boundary. Soviet. Math. Dokl., 5, pp. 1034-1038.
Mikhailets, V. A. & Murach, A. A. (2008). An elliptic boundary-value problem in a two-sided refined scale of spaces. Ukr. Math. J., 60, No. 4, pp. 574-597. doi: https://doi.org/10.1007/s11253-008-0074-z
Roitberg, Ja. A. (1970). Homeomorphism theorems and Green's formula for general elliptic boundary value problems with boundary conditions that are not normal. Sb. Math., 12, No. 2, pp. 177-212. doi: https://doi.org/10.1007/BF01085380
Kostarchuk, Ju. V. & Roitberg, Ja. A. (1973). Isomorphism theorems for elliptic boundary value problems with boundary conditions that are not normal. Ukr. Math. J., 25, No. 2, 222-226. doi: https://doi.org/10.1007/BF01096983
Kostarchuk, Ju. V. (1973). Local increase of the smoothness of generalized solutions to elliptic boundary value problems with boundary conditions that are not normal. Ukr. Mat. Zh., 25, No. 4, 536–540 (in Russian). doi: https://doi.org/10.1007/BF01096983
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.