Adsorption of dyes of different types on polyvinylformal-based porous sorbents
DOI:
https://doi.org/10.15407/dopovidi2019.06.054Keywords:
dyes, polymer sponge, polyvinylformal, sorptionAbstract
This paper deals with the study of the adsorption properties of polyvinylformal (PVF). A highly porous sponge sorbent based on polyvinylformal, as well as filled sorbents with additives of carbon nanotubes, laponite, and aminopropyl aerosil (APA), is synthesized. The adsorption patterns on the obtained sorbents for different dyes (cationic — methyl violet, anionic — azorubine, and non-ionic — nigrosine) are studied. It is established that the polyvinylformal sorbent removes azorubine at pH < 4 and methyl violet at pH > 4. Аdsorption equilibrium for all sorbents during the sorption of dyes is reached in 15-30 min. PVF filled with aminopropyl aerosil showed the highest sorption capacity toward azorubine and nigrosine and amounts to 11.4 and 7.1 mg/g, respectively, for methyl violet — unfilled PVF (5.0 mg/g). The kinetic measurements for all the composites and dyes indicate that the adsorption process follows the pseudo-second order kinetics. To describe the obtained adsorption isotherms of methyl violet on all sorbents and azorubine on pure PVF and PVF-APA, the Langmuir theoretical model fits better. In the case of nigrosine on all sorbents and azorubine on PVF filled with carbon nanotubes and laponite, the Freundlich model is preferable.
Downloads
References
Yagub, M. T., Sen, T. K., Afroze, S. & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci., 209, pp. 172-184. doi: https://doi.org/10.1016/j.cis.2014.04.002
Ptaszkowska-Koniarz, M., Goscianska, J. & Pietrzak, R. (2017). Adsorption of dyes on the polymer nanocomposites modified with methylamine and copper(II) chloride. J. Colloid Interface Sci., 504, pp. 549-560. doi: https://doi.org/10.1016/j.jcis.2017.06.008
Sandeman, S. R., Gun’ko, V. M., Bakalinska, O. M., Howell, C. A., Zheng, Y., Kartel, M. T., Phillips, G. J. & Mikhalovsky, S. V. (2011). Adsorption of anionic and cationic dyes by activated carbons, PVA hydrogels, and PVA/AC composite. J. Colloid Interface Sci., 358, pp. 582-592. doi: https://doi.org/10.1016/j.jcis.2011.02.031
Li, P., Siddaramaiah, Kim, N. H., Yoo, G.-H. & Lee, J.-H. (2009). Poly(acrylamide/laponite) nanocomposite hydrogels: swelling and cationic dye adsorption properties. J. Appl. Polym. Sci., 111, pp. 1786-1798. doi: https://doi.org/10.1002/app.29061
Samchenko, Yu., Korotych, O., Kernosenko, L., Kryklia, S., Litsis, O., Skoryk, M., Poltoratska, T. & Pasmurtseva, N. (2018). Stimuli-responsive hybrid polymers based on acetals of polyvinyl alcohol and acrylic hydrogels. Colloids Surf. A, 544, pp. 91-104. doi: https://doi.org/10.1016/j.colsurfa.2018.02.015
Kryklya, S., Samchenko, Yu., Konovalova, V., Poltoracka, T., Pasmurceva, N. & Ulberg, Z. (2016). Hybrid pHand thermosensitive hydrogels based on polyvinylalcohol and acrylic monomers. Magisterium. Iss. 63, Chemical sciences, pp. 20-28 (in Ukrainian).
Dawodu, M. O., Akpomie, K. G. (2016). Evaluation of potential of a Nigerian soil as an adsorbent for tartrazine dye: Isotherm, kinetic and thermodynamic studies. Alexandria Eng. J., 55, pp. 3211-3218. doi: https://doi.org/10.1016/j.aej.2016.08.008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.