pH- and thermosensitive nano(ferro)gels based on N-isopropylacrylamide and acrylic acid
DOI:
https://doi.org/10.15407/dopovidi2017.06.074Keywords:
acrylic acid, doxorubicin, ferrogels, magnetite, N-isopropylacrylamide, smart, thermosensitive gels, zeta potentialAbstract
Nanosized hydrogels based on thermosensitive poly-N-isopropylacrylamide, copolymers with acrylic acid, and their nanocomposites with incorporated magnetite nanoparticles (approximate particle size of 100-200 nm) are synthesized. It was shown that the hydrogel matrix size and the zeta potential of nanoparticles depend on the temperature and pH. The diameter of nanoparticles is reduced by 2-3 times, if the hydrogel is heated up to 32 °C, and by 3-5 times, if pH decreases below 5. This creates conditions for the controllable release of incorporated anticancer drugs (in particular, doxorubicin) and for using nanogels in therapeutic hypothermia. Incorporation of nanosized magnetite into the hydrogel matrices provides a controlled localization of therapeutic systems in close proximity to target organs by applying a low-intensity constant magnetic field.
Downloads
References
Park, W., Park, S., j. & Na, K. (2010). Potential of self-organizing nanogel with acetylated chondroitin sulfate as an anti-cancer drug carrier. Colloid. Surfaces B., 79, pp. 501-508. https://doi.org/10.1016/j.colsurfb.2010.05.025
Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R. & Rudzinski, W.E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. J. Control.Release, 70, pp. 1-20. https://doi.org/10.1016/S0168-3659(00)00339-4
Mitra, S., Gaur, U., Ghosh, P. & Maitra, A. (2001). Tumour targeted delivery of encapsulated dextran-do xorubicin conjugate using chitosan nanoparticles as carrier. J. Control. Release, 74, pp. 317-323. https://doi.org/10.1016/S0168-3659(01)00342-X
Agiotis, L., Theodorakos, I., Samothrakitis, S., Papazoglou, S., Zergioti, I. & Raptis, Y.S. (2016). Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications. J. Magn. Magn. Mater., 401, pp. 956-964. https://doi.org/10.1016/j.jmmm.2015.10.111
Dilnawaz, F., Singh, A., Mohanty, C. & Sahoo, S. K. (2010). Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials, 31, pp. 3694-3706. https://doi.org/10.1016/j.biomaterials.2010.01.057
Yallapu, M. M, Jaggi, M. & Chauhan, S. C. (2011). Design and engineering of nanogels for cancer treatment. Drug Discovery Today, 16, pp. 457-463. https://doi.org/10.1016/j.drudis.2011.03.004
Morinloto, N., Qiu, X. P., Winnik, F. M. & Akiyoshi, K. (2008). Dual stimuli-responsive nanogels by selfassembly of polysaccharides lightly grafted with thiol-terminated poly(N-isopropylacrylamide) chains. Macromolecu les, 41, pp. 5985-5987. https://doi.org/10.1021/ma801332x
Chang, B., Sha, X., Guo, J., Jiao, Y., Wang, C. & Yang, W. (2011). Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J. Mater. Chem., 21, pp. 9239-9247. https://doi.org/10.1039/c1jm10631g
Liu, C., Guo, J., Yang, W., Hu, J., Wang, C. & Fu, S. (2009). Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release. J. Mater. Chem., 19, pp. 4764-4770. https://doi.org/10.1039/b902985k
Oh, N. M., Oh, K. T., Baik, H. J. & Lee, B. R. (2010). A self-organized 3-diethylaminopropyl-bearing glycol chitosan nanogel for tumor acidic pH targeting: In vitro evaluation. Colloid. Surfaces B., 78, pp. 120-126. https://doi.org/10.1016/j.colsurfb.2010.02.023
Bae Y., Nishiyama N., Fukushima, S., Koyama, H., Yasuhiro, M. & Kataoka, K. (2005). Preparation and biological characterization of polymeric micelle drug carriers with Intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem., 16, pp. 122-130. https://doi.org/10.1021/bc0498166
Yadavalli, T., Ramasamy, S. & Chandrasekaran, G. (2015). Dual responsive PNIPAM–chitosan targeted magnetic nanopolymersfor targeted drug delivery. J. Magn. Magn. Mater., 380, pp. 315-320. https://doi.org/10.1016/j.jmmm.2014.09.035
Konovalova, V. V., Samchenko, Yu. M., Kryklya, S. O., Scherbakov, S. M., Burban, A. F. & Ulberg, Z. R. (2016). Synthesys and characterization of multi-responsive nano-sized hydrogel based on N-isopropylacryl amide and magnetite. J. Appl. Chem. Sci. Intern., 6, pp. 132-140.
Staples, C. A., Murphy, S. R., McLaughlin, J. E., Leung, H. W., Cascieri, T. C. & Farr, C. H. (2000). Determination of selected fate and aquatic toxicity characteristics of acrylic acid and a series of acrylic esters. Chemosphere, 40, pp. 29-38. https://doi.org/10.1016/S0045-6535(99)00228-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.