On induced modules over locally Abelian-by-polycyclic groups of finite rank

Authors

  • A.V. Tushev Oles Honchar Dnipro National University

DOI:

https://doi.org/10.15407/dopovidi2019.06.008

Keywords:

group rings, induced modules, particle rings, primitive algebras

Abstract

We develop some methods for studying the modules over group rings, which are based on properties of induced modules and on the embedding of these modules in the modules over rings of quotients of group rings. Using these methods, we have obtained the criteria of primitivity for group algebras of certain classes of locally soluble groups.

Downloads

Download data is not yet available.

References

Tushev, A. V. (2000). On primitive representations of soluble groups of finite rank. Sb. Mat., 191, No. 11, pp. 1707-1748. doi: https://doi.org/10.1070/SM2000v191n11ABEH000524

Baer, R. (1964). Irreducible groups of automorphisms of Abelian groups. Pacific J. Math., 14, pp. 385-406. doi: https://doi.org/10.2140/pjm.1964.14.385

Zaitsev, D. I. (1980). Products of Abelian groups. Algebra and Logic, 19, No. 2, pp. 94-106. doi: https://doi.org/10.1007/BF01669835

Brown, K. A. (1982). The Nullstellensatz for certain group rings. J. London Math. Soc., 26, No. 2, pp. 425-434. doi: https://doi.org/10.1112/jlms/s2-26.3.425

Tushev, A. V. (2002). On solvable groups with proper quotient groups of finite rank. Ukr. Math. J., 54, No. 11, pp. 1897-1905. doi: https://doi.org/10.1023/A:1024052726835

Tushev, A. V. (1999). Induced modules over group algebras of metabelian groups of finite rank. Commun. Algebra, 27, No. 12, pp. 5921-5938. doi: https://doi.org/10.1080/00927879908826798

Farcas, D. R. & Passman, D. S. (1982). Primitive Noetherian group rings. Commun. Algebra, 6, No. 3, pp. 301-315. doi: https://doi.org/10.1080/00927877808822247

Roseblade, J. E. (1978). Prime ideals in group rings of polycyclic groups. Proc. London Math. Soc., 36, No. 3, pp. 385-447. doi: https://doi.org/10.1112/plms/s3-36.3.385

Brown, K. A. (1981). Primitive group rings of soluble groups. Arch. Math., 36, No. 1, pp. 404-413. doi: https://doi.org/10.1007/BF01223718

Brookes, C. J. C. (1985). Ideals in group rings of soluble groups of finite rank. Math. Proc. Cambridge. Philos. Soc., 97, No. 1, pp. 27-49. doi: https://doi.org/10.1017/S0305004100062551

Hall, P. (1959). On the finiteness of certain soluble groups. Proc. London Math. Soc., 9, No. 4, pp. 595-622. doi: https://doi.org/10.1112/plms/s3-9.4.595

McConnell, J. C. (1982). The Nullstellensatz and Jacobson properties for rings of differential operators. J. London Math. Soc., 26, No. 1, pp. 37-42. doi: https://doi.org/10.1112/jlms/s2-26.1.37

Downloads

Published

21.04.2024

How to Cite

Tushev, A. (2024). On induced modules over locally Abelian-by-polycyclic groups of finite rank. Reports of the National Academy of Sciences of Ukraine, (6), 8–11. https://doi.org/10.15407/dopovidi2019.06.008