Synthesis and evaluation of the antiviral activity of 2-(dichloromethyl)pyrazolo[1,5-a][1,3,5]triazines
DOI:
https://doi.org/10.15407/dopovidi2019.07.075Keywords:
1H-pyrazol-5-amine, 2-dichloro-1-cyanoethenyl)carboxamide, 3, 5-a][1, 5]triazine, antiviral activity, N-(2, pyrazolo[1Abstract
It is found that N-(2,2-dichloro-1-cyanoethenyl)carboxamides react with 1H-pyrazol-5-amines in the presence of triethylamine to give 2-(dichloromethyl)pyrazolo[1,5-a][1,3,5]triazines. Apparently, this cyclocondensation con sists of the following steps: a) the addition of an NH2 group to the activated C=C bond to form the first amide intermediate, b) the elimination of HCN promoted by triethylamine to give the second amide intermediate, c) the intramolecular cyclization of the latter into the final product with H2O elimination. 2 (Dichloromethyl)-4,7-diphenylpyrazolo[1,5-a] [1,3,5]triazine was stable to boiling MeONa/MeOH, AcONa/AcOH, and Na2S/H2O/EtOH solutions, but cleaved with hydrochloric or sulfuric acid. Five 2-(dichloromethyl)pyrazolo[1,5-a][1,3,5]triazines are tested against i) Dengue virus 2 (strain New Guinea C, cell line Huh7), ii) Tacaribe virus (strain TRVL 11573, cell line Vero), iii) Zika virus (strain MR766, cell line Vero 76), iv) Human cytomegalovirus (strain AD169, cell line HFF), v) Herpes simplex virus 1 (strain E-377, cell line HFF), vi) Varicella-Zoster virus (strain Ellen, cell line HFF). The viral-induced cytopathic effect inhibition, as well as the compound toxicity in host cells, is evaluated. In primary assays (i-iii), the compounds have no sufficient antiviral activity that would exceed their cytotoxicity level at concentrations within 0.1-100 μg/mL, but assays (iv-vi) gave acceptable results. All compounds showed rather a low activity with the exception of 2-(dichloromethyl)-4,7- diphenylpyrazolo[1,5-a][1,3,5]triazine, which, however, had a comparatively high toxicity. In terms of selectivity, the interaction 2-(dichloromethyl)-4,7-bis(4-methylphenyl)pyrazolo[1,5-a][1,3,5]triazine—AD169—HFF (assay iv) with SI50 > 6 is noteworthy.
Downloads
References
Matsumura, K., Saraie, T. & Hashimoto, N. (1972). ββ-Dichloro-α-aminoacrylonitrile. J. Chem. Soc., Chem. Commun., Iss. 12, pp. 705-706. doi: https://doi.org/10.1039/C39720000705
Drach, B.S., Sviridov, E.P., Kisilenko, A.A. & Kirsanov, A.V. (1973). Interaction of secondary amines with N-acyl-2,2-dichlorovinylamines and N-acyl-1-cyano-2,2-dichlorovinylamines. J. Org. Chem. USSR (Engl. Transl.), 9, pp. 1842-1846. doi: https://doi.org/10.1002/chin.197350337
Matsumura, K., Saraie, T. & Hashimoto, N. (1976). Studies of nitriles. VIII. Reactions of N-acyl derivatives of 2-amino-3,3-dichloroacrylonitrile (ADAN) with amines. 1. A new synthesis of 2-substituted-5-(substituted amino)oxazole-4-carbonitriles and 4-N-acylcarboxamides. Chem. Pharm. Bull., 24, Iss. 5, pp. 924-940. doi: https://doi.org/10.1248/cpb.24.924
Vinogradova, T.K., Mis’kevich, G.N. & Drach, B.S. (1980). Reaction of functional derivatives of 3,3-di chloro-2-acylaminoacrylic acids with benzamidine. J. Org. Chem. USSR (Engl. Transl.), 16, pp. 1587-1592. doi: https://doi.org/10.1002/chin.198104227
Elguero, J. (1984). Pyrazoles and their Benzo Derivatives. In Katritzky, A.R., & Rees, C.W. (Eds.). Comprehensive Heterocyclic Chemistry (Vol. 5) (pp. 167-303). Elsevier. doi: https://doi.org/10.1016/B978-008096519-2.00072-2
Elguero, J. (1996). Pyrazoles. In Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (Eds.). Comprehensive Heterocyclic Chemistry II (Vol. 3) (pp. 1-75). Elsevier. doi: https://doi.org/10.1016/B978-008096518-5.00059-9
Yet, L. (2008). Pyrazoles. In Katritzky, A.R., Ramsden, C.A., Scriven, E.F.V., & Taylor, R.J.K. (Eds.). Compre hensive Heterocyclic Chemistry III (Vol. 4) (p. 1-141). Elsevier. doi: https://doi.org/10.1016/B978-008044992-0.00401-6
Drach, B.S., Sviridov, E.P. & Lavrenyk, T.Y. (1974). Reaction of α-acylamino-β,β-dichloroacrylonitriles with primary amines. J. Org. Chem. USSR (Engl. Transl.), 10, pp. 1278-1280.
Hirwe, N. W. & Deshpannde, J. S. (1941). Studies in chloral amides. IX. Reactivity of α- chlorine in α-chloro-chloral-toluic amides. Proc. Natl. Acad. Sci. India A, 13, pp. 277-280. doi: https://doi.org/10.1007/BF03049004
Grandberg, I. I., Ting, W.-P. & Kost, A. N. (1961). Studies of pyrazoles. XX. Synthesis of 5-aminopyrazoles and their sulfamide derivatives. J. Gen. Chem. USSR (Engl. Transl.), 31, pp. 2153-2157.
Takamizawa, A. & Hamashima, Y. (1964). Syntheses of pyrazole derivatives. VII. C-alkyl- and C-bromo-7-aminopirazolo[1,5-a]pyrimidines. Yakugaku Zasshi, 84, pp. 1113-1118. doi: https://doi.org/10.1248/yakushi1947.84.11_1113
Nam, N. L., Grandberg, I. I. & Sorokin, V. I. (2000). Synthesis of N(1)-substituted 5-amino-3-methylpyrazoles. Chem. Het. Comp., 36, Iss. 3, pp. 281-283. doi: https://doi.org/10.1007/BF02256864
Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W.-K. (2008). Pyrazolo[1,5-a][1,3,5]triazines (5-aza-9-deazapurines): synthesis and biological activity. Heterocycles, 75, Iss. 7, pp. 1575-1622. doi: https://doi.org/10.3987/REV-08-629
Lim, F. P. L. & Dolzheko, A. V. (2014). 1,3,5-Triazine-based analogues of purine: From isosteres to privileged scaffolds in medicinal chemistry. Eur. J. Med. Chem., 85, pp. 371-390. doi: https://doi.org/10.1016/j.ejmech.2014.07.112
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.