Influence of the structure of natural cinnamic acids on their interaction with highly dispersed aluminum oxide in aqueous medium

Authors

  • N.O. Lipkovska Chuiko Institute of Surface Chemistry
  • V.M. Barvinchenko Chuiko Institute of Surface Chemistry

DOI:

https://doi.org/10.15407/dopovidi2020.09.068

Keywords:

caffeic acid, cinnamic acid, coumaric acid, ferulic acid, highly dispersed alumina, sorption

Abstract

The regularities of the sorption and spectral changes of natural cinnamic acids upon the interaction with highly dispersed aluminum oxide in the aqueous medium depending on the adsorbate chemical nature and the solution pH are established. It is found that the pH dependences of the sorption of cinnamic, coumaric and ferulic acids are described by the same type of curves, and the position of their maxima on the pH scale corresponds to the values of the thermodynamic dissociation constants of the carboxyl groups of these acids (pKCOOH = =4.4-4.6). It is shown that the pH dependence of the caffeic acid sorption at pH <4.5 is similar to the other acids studied, and the expansion of the pH range of maximum sorption to the alkaline region is due to the formation of a surface chelate complex with Al (III).

Downloads

Download data is not yet available.

References

El-Seedi, H.R., El-Said, A.M., Khalifa, S.A., Göransson, U., Bohlin, L., Borg-Karlson, A.K. & Verpoorte, R. (2012). Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem., 60, No. 44, pp. 10877-10895. https://doi.org/10.1021/jf301807g

Razzaghi-Asl, N., Garrido, J., Khazraei, H., Borges, F. & Firuzi, O. (2013). Antioxidant properties of hydroxycinnamic acids: a review of structure- activity relationships. Curr. Med. Chem., 20, pp. 4436-4450. https://doi.org/10.2174/09298673113209990141

Shil’ko, Е. А., Milevskaya, V. V., Temerdashev, Z. A. & Kiseleva N. V. (2018). Solid phase concentration of phenolic compounds from the aqueous medicinal raw plant material extracts on the example of tutsan (Hypericum perforatum L.). Analytics and Control, 22, No. 3, pp. 303-314 (in Russian). https://doi.org/10.15826/analitika.2018.22.3.013

Silva, M., Castellanos, L. & Ottens, M. (2018). Capture and purification of polyphenols using functionalized hydrophobic resins. Ind. Eng. Chem. Res., 57, No. 15, pp.5359-5369. https://doi.org/10.1021/acs.iecr.7b05071

Simon, V., Thuret, A., Candy, L., Bassil, S., Duthen, S., Raynaud, C. & Masseron, A. (2015). Recovery of hydroxycinnamic acids from renewable resources by adsorption on zeolites. Chem. Eng. J., 280, pp. 748-754. https://doi.org/10.1016/j.cej.2015.06.009

Chandrasekaran, S., Ranu, B. C., Yadav, G. D. & Bhanumati, S. (2009). Monographs on green chemistry experiments. GC Task Force, DST. 76 ISSN 1025-6415.

Dovbii, O. A., Kazakova, O. A. & Lipkovskaya, N. A. (2006). The effect of the structure of cinnamic acid derivatives on their interaction with highly dispersed silica in aqueous medium. Colloid J., 68, No. 6, pp. 707-712 (in Russian). https://doi.org/10.1134/S1061933X06060068

Pogorelyi, V. K., Kazakova, O. A., Barvinchenko, V. N., Smirnova, O. V., Pakhlov, E. M. & Gun’ko, V. M. (2007). Adsorption of cinnamic and caffeic acids on the surface of highly dispersed silica from different solvents. Colloid J., 69, No. 2, pp. 203-211. https://doi.org/10.1134/S1061933X07020093

Lipkovskaya, N. A. & Barvinchenko, V. N. (2019). The interaction of quercetin with highly dispersed alumina in a water–ethanol medium. Colloid J., 81, No. 4, pp. 411-415 (in Russian). https://doi.org/10.1134/S0023291219040086

Barvinchenko, V. N. & Lipkovskaya, N. A. (2019). Sorption of 3-Rutinoside-5,7,3′,4′-tetrahydroxyflavone on pyrogenic aluminum oxide from aqueous ethanol solutions. Russ. J. Phys. Chem., 93, No. 12, pp. 2383-2387. https://doi.org/10.1134/S0044453719120033

Beneduci, A., Furia, E., Russo, N. & Marino, T. (2017). Complexation behaviour of caffeic, ferulic and p-coumaric acids towards aluminium cations: a combined experimental and theoretical approach. New J. Chem., 41, No. 12. pp. 5182-5190. https://doi.org/10.1039/C7NJ00661F

Tombácz, E., Szekeres, M. & Klumpp, E. (2001). Interfacial acid-base reactions of aluminum oxide dispersed in aqueous electrolyte solutions. 2. Calorimetric study on ionization of surface sites. Langmuir, 17, No. 5. pp. 1420-1425. https://doi.org/10.1021/la001323b

Bernstein, I. Ya. & Kaminsky, Yu. L. (1986). Spectrophotometric analysis in organic chemistry. Leningrad: Khimia (in Russian).

Barvinchenko, V. N., Lipkovskaya, N. A., Kulik, T. V. & Kartel’, N. T. (2019). Adsorption of natural 3-phenylpropenoic acids on the surface of cerium dioxide. Colloid J., 81, No. 1, pp. 1-7 (in Russian). https://doi.org/10.1134/S0023291219010026

Published

28.03.2024

How to Cite

Lipkovska, N. ., & Barvinchenko, V. . (2024). Influence of the structure of natural cinnamic acids on their interaction with highly dispersed aluminum oxide in aqueous medium . Reports of the National Academy of Sciences of Ukraine, (9), 68–76. https://doi.org/10.15407/dopovidi2020.09.068