Influence of the structure of natural cinnamic acids on their interaction with highly dispersed aluminum oxide in aqueous medium
DOI:
https://doi.org/10.15407/dopovidi2020.09.068Keywords:
caffeic acid, cinnamic acid, coumaric acid, ferulic acid, highly dispersed alumina, sorptionAbstract
The regularities of the sorption and spectral changes of natural cinnamic acids upon the interaction with highly dispersed aluminum oxide in the aqueous medium depending on the adsorbate chemical nature and the solution pH are established. It is found that the pH dependences of the sorption of cinnamic, coumaric and ferulic acids are described by the same type of curves, and the position of their maxima on the pH scale corresponds to the values of the thermodynamic dissociation constants of the carboxyl groups of these acids (pKCOOH = =4.4-4.6). It is shown that the pH dependence of the caffeic acid sorption at pH <4.5 is similar to the other acids studied, and the expansion of the pH range of maximum sorption to the alkaline region is due to the formation of a surface chelate complex with Al (III).
Downloads
References
El-Seedi, H.R., El-Said, A.M., Khalifa, S.A., Göransson, U., Bohlin, L., Borg-Karlson, A.K. & Verpoorte, R. (2012). Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem., 60, No. 44, pp. 10877-10895. https://doi.org/10.1021/jf301807g
Razzaghi-Asl, N., Garrido, J., Khazraei, H., Borges, F. & Firuzi, O. (2013). Antioxidant properties of hydroxycinnamic acids: a review of structure- activity relationships. Curr. Med. Chem., 20, pp. 4436-4450. https://doi.org/10.2174/09298673113209990141
Shil’ko, Е. А., Milevskaya, V. V., Temerdashev, Z. A. & Kiseleva N. V. (2018). Solid phase concentration of phenolic compounds from the aqueous medicinal raw plant material extracts on the example of tutsan (Hypericum perforatum L.). Analytics and Control, 22, No. 3, pp. 303-314 (in Russian). https://doi.org/10.15826/analitika.2018.22.3.013
Silva, M., Castellanos, L. & Ottens, M. (2018). Capture and purification of polyphenols using functionalized hydrophobic resins. Ind. Eng. Chem. Res., 57, No. 15, pp.5359-5369. https://doi.org/10.1021/acs.iecr.7b05071
Simon, V., Thuret, A., Candy, L., Bassil, S., Duthen, S., Raynaud, C. & Masseron, A. (2015). Recovery of hydroxycinnamic acids from renewable resources by adsorption on zeolites. Chem. Eng. J., 280, pp. 748-754. https://doi.org/10.1016/j.cej.2015.06.009
Chandrasekaran, S., Ranu, B. C., Yadav, G. D. & Bhanumati, S. (2009). Monographs on green chemistry experiments. GC Task Force, DST. 76 ISSN 1025-6415.
Dovbii, O. A., Kazakova, O. A. & Lipkovskaya, N. A. (2006). The effect of the structure of cinnamic acid derivatives on their interaction with highly dispersed silica in aqueous medium. Colloid J., 68, No. 6, pp. 707-712 (in Russian). https://doi.org/10.1134/S1061933X06060068
Pogorelyi, V. K., Kazakova, O. A., Barvinchenko, V. N., Smirnova, O. V., Pakhlov, E. M. & Gun’ko, V. M. (2007). Adsorption of cinnamic and caffeic acids on the surface of highly dispersed silica from different solvents. Colloid J., 69, No. 2, pp. 203-211. https://doi.org/10.1134/S1061933X07020093
Lipkovskaya, N. A. & Barvinchenko, V. N. (2019). The interaction of quercetin with highly dispersed alumina in a water–ethanol medium. Colloid J., 81, No. 4, pp. 411-415 (in Russian). https://doi.org/10.1134/S0023291219040086
Barvinchenko, V. N. & Lipkovskaya, N. A. (2019). Sorption of 3-Rutinoside-5,7,3′,4′-tetrahydroxyflavone on pyrogenic aluminum oxide from aqueous ethanol solutions. Russ. J. Phys. Chem., 93, No. 12, pp. 2383-2387. https://doi.org/10.1134/S0044453719120033
Beneduci, A., Furia, E., Russo, N. & Marino, T. (2017). Complexation behaviour of caffeic, ferulic and p-coumaric acids towards aluminium cations: a combined experimental and theoretical approach. New J. Chem., 41, No. 12. pp. 5182-5190. https://doi.org/10.1039/C7NJ00661F
Tombácz, E., Szekeres, M. & Klumpp, E. (2001). Interfacial acid-base reactions of aluminum oxide dispersed in aqueous electrolyte solutions. 2. Calorimetric study on ionization of surface sites. Langmuir, 17, No. 5. pp. 1420-1425. https://doi.org/10.1021/la001323b
Bernstein, I. Ya. & Kaminsky, Yu. L. (1986). Spectrophotometric analysis in organic chemistry. Leningrad: Khimia (in Russian).
Barvinchenko, V. N., Lipkovskaya, N. A., Kulik, T. V. & Kartel’, N. T. (2019). Adsorption of natural 3-phenylpropenoic acids on the surface of cerium dioxide. Colloid J., 81, No. 1, pp. 1-7 (in Russian). https://doi.org/10.1134/S0023291219010026
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.