Parabolic mixed problems for Petrovskii systems in spaces of generalized smoothness
DOI:
https://doi.org/10.15407/dopovidi2014.10.024Keywords:
mixed problems, Petrovskii systems, spaces of generalized smoothnessAbstract
For some classes of Hilbert spaces of generalized smoothness, we prove a theorem on the wellposedness of parabolic initial-boundary-value problems for Petrovskii systems with zero Cauchy data. The regularity of functions that form these spaces is characterized by a couple of number parameters and a functional parameter. The latter varies regularly at infinity in Karamata's sense. We prove a theorem on a local increase in the regularity of solutions to the problem. We obtain new sufficient conditions, under which the generalized derivatives (of a prescribed order) of the solutions should be continuous.
Downloads
References
Paneah B. The oblique derivative problem. The Poincare problem, Berlin: Wiley-VCH, 2000.
Triebel H. The structure of functions, Basel: Birkhauser, 2001. https://doi.org/10.1007/978-3-0348-0569-8
Nicola F., Rodino L. Global Pseudodifferential Calculas on Euclidean spaces, Basel: Birkhauser, 2010. https://doi.org/10.1007/978-3-7643-8512-5
Mikhailets V. A., Murach A. A. Space Hormander, interpolation, and elliptic problems, Kiev: Institute of mathematics NAS Ukraine, 2010. Retrieved from arXiv:1106.3214 (in Russian).
Mikhailets V. A., Murach A. A. Banach J. Math. Anal., 2012, 6, No 2: 211–281. https://doi.org/10.15352/bjma/1342210171
Hormander L. Linear partial differential operators, Berlin: Springer, 1963. (Trans. rus.: Hormander L. Linear differential operators with partial derivatives, Moscow: Mir, 1965).
Volevich L. R., Pneyakh B. P. Uspekhi mat. nauk, 1965, 20, No 1: 3–74 (in Russian).
Petrovskiy I. G. Selected works. Systems of partial differential equations. Algebraic geometry, Moscow: Nauka, 1986 (in Russian).
Solonnikov V. A. Tr. Mat. in-ta AN USSR, 1967, 102: 137–160 (in Russian).
Agranovich M. S., Vishik M. I. Uspekhi mat. nauk, 1964, 19, No 3: 53–161 (in Russian).
Zhitarashu N. V., Eidelman S. D. Parabolic Boundary Value Problems, Kishinev: Shtiintsa, 1992 (in Russian).
Solonnikov V. A. Tr. Mat. in-ta AN USSR, 1965, 83: 3–163 (in Russian).
Los V., Murach A. A. Methods Funct. Anal. Topol., 2013, 19, No 2: 146–160.
Los V. N., Murach A. A. Dopov. Nac. akad. nauk Ukr., 2014, No 6: 23–31 (in Russian).
Seneta E. Regularly varying functions, Moscow: Nauka, 1985 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.