Quasi-phi-functions for a mathematical modeling of the relations of geometric objects

Authors

  • Yu.G. Stoyan
  • A.V. Pankratov
  • T. E. Romanova
  • N. I. Chernov

DOI:

https://doi.org/10.15407/dopovidi2014.09.049

Keywords:

geometric objects, modeling

Abstract

The article considers the classes of special functions (quasi-phi-functions, normalized quasi-phi-functions, pseudonormalized quasi-phi-functions). The functions allow us to describe the non-overlapping of a pair of rotating geometric objects and distance constraints analytically. Basic characteristics of quasi-phi-functions are formulated in the form of theorems. We introduce quasi-phi-functions for some rotating 2D- and 3D-objects.

Downloads

References

Wascher G., Hauner H., Schumann H. Europ. J. of Operational Research., 2007, 183, Iss. 3: 1109–1130. https://doi.org/10.1016/j.ejor.2005.12.047

Stoyan Yu. Dopov. Nac. akad. nauk Ukr., 2001, No 8: 112–117.

Chernov N., Stoyan Yu., Romanova T. Computational Geometry: Theory and Applications, 2010, 43(5): 535–553. https://doi.org/10.1016/j.comgeo.2009.12.003

Chernov N., Stoyan Yu., Romanova T., Pankratov A. Advances in Operations Research, 2012, Article ID 346358.

Pankratov A. Systemy obrobky informatsii, 2013, 1(108): 182–186 (in Russian).

Stoyan Yu., Chugay A. Cybernetics and Systems Analysis, 2012, 48, No 6: P. 837–845. https://doi.org/10.1007/s10559-012-9463-2

Stoyan Yu. G., Chugay A. M. Dopov. Nac. akad. nauk Ukr., 2011, No 12: 35–40 (in Russian).

Published

06.03.2025

How to Cite

Stoyan, Y., Pankratov, A., Romanova, T. E., & Chernov, N. I. (2025). Quasi-phi-functions for a mathematical modeling of the relations of geometric objects . Reports of the National Academy of Sciences of Ukraine, (9), 49–54. https://doi.org/10.15407/dopovidi2014.09.049

Issue

Section

Information Science and Cybernetics