On the informational and algorithmic complexities of some classes of Fredholm equations of the first kind
DOI:
https://doi.org/10.15407/dopovidi2014.09.025Keywords:
algorithmic complexities of classes, Fredholm equationsAbstract
The problems of minimization of computational efforts for the numerical solving of severely ill-posed problems are studied. A projection scheme of discretization, which is economical in a sense of used harmonics, is presented. Due to the scheme, the order estimates of the quantities characterizing the informational and algorithmic complexities are obtained.
Downloads
References
Traub J. F., Wasilkowski G., Wozniakowski H. Information-Based Complexity. Boston: Acad. Press, 1988.
Traub J., Wozniakowski H. The general theory of optimal algorithms, Moscow: Mir, 1983 (in Russian).
Werschulz A. G. What is the complexity of ill-posed problems? New York: Columbia Univ., 1985.
Wozniakowski H. Ann. Rev. Comput. Sci., 1986, 1: 319–380. https://doi.org/10.1146/annurev.cs.01.060186.001535
Pereverzev S. V., Solodky S. G. J. Complexity, 1996, 12, No 4: 401–415. https://doi.org/10.1006/jcom.1996.0025
Solodky S. G. Ukr. math. zhurn. 1998, 50, No 6: 838–844 (in Russian).
Krein S. G. (Ed.) Function analysis Ser. Reference mathematical library, Moscow: Nauka, 1972 (in Russian).
Plato R., Vainikko G. M. Numer. Math., 1990, 57: 63–79. https://doi.org/10.1007/BF01386397
Mathe P., Pereverzev S. V. Inverse Problems., 2003, 19, No 6: 1263–1277. https://doi.org/10.1088/0266-5611/19/6/003
Tautenhahn U. Numer. Funct. Anal. and Optimiz., 1998, 19, No 3–4: 377–398. https://doi.org/10.1080/01630569808816834
Solodky S. G., Myleiko G. L. Dopov. Nac. acad. nauk Ukr., 2013, No 8: 21–27 (in Ukrainian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.