On the application of mass lumping in the Petrov–Galerkin finite element method for convection-diffusion problems
DOI:
https://doi.org/10.15407/dopovidi2014.05.039Keywords:
convection-diffusion problems, Petrov–Galerkin finite element methodAbstract
We address the topics of overcoming the dispersive and dissipative effects that arise after the application of mass lumping in the finite-element Petrov–Galerkin method for convection-diffusion problems. A generalization of some earlier results in this field is carried out, as well as the comparison with other existing approaches. The test calculations confirm the theoretical results obtained.
Downloads
References
Finlayson B. A. Numerical methods for problems with moving fronts. Seattle; Washington: Ravenna Park Publ., 1992.
Roos H.-G., Stynes M., Tobiska L. Robust numerical methods for singularly perturbed differential equations. Berlin: Springer-Verlag, 2008.
Sirik S. V., Salnikov N. N. Probl. upravleniia i informatikli, 2012, No. 1: 94–110 (in Russian).
Zienkiewicz O. Z., Taylor R. L. The finite element method. Vol. 1: The basis. Oxford: Butterworth-Heinemann, 2000.
Hansbo P. Comput. Methods Appl. Mech. Engrg., 1994, 117: 423–437. https://doi.org/10.1016/0045-7825(94)90127-9
Wendland E., Schulz H. E. Revista Minerva., 2005, 2, No. 2: 227–233.
Sirik S. V. Kibernetika i system. analiz, 2013, No. 5: 152–163 (in Russian).
Guermond J.-L., Pasquetti R. Comput. Methods Appl. Mech. Engrg., 2013, 253: 186–198. https://doi.org/10.1016/j.cma.2012.08.011
Samarskiy A. A., Popov Yu. P. Difference Methods solutions Gas-fired dynamics problems. 5th ed. Moscow: Liborkom, 2009 (in Russian).
Skvortsov L. M. Vychislit. metody i programmirovanie, 2008, 9: 154–162 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.