Necessary conditions for the K-extremum of a variational functional in Sobolev spaces over multi-dimensional domains

Authors

  • I.V. Orlov
  • E.V. Bozhonok
  • E.M. Kuzmenko

DOI:

https://doi.org/10.15407/dopovidi2014.04.019

Keywords:

K-extremum of a variational functional, multi-dimensional domain, Sobolev space

Abstract

This paper deals with a generalized Euler–Ostrogradsky equation and necessary conditions of the Legendre type in the case of the compact extrema of variational functionals in Sobolev spaces over multidimensional domains. The inverse problem of smoothness refinement for the solutions of the generalized Euler–Ostrogradsky equation is considered. It is shown that the solution of the generalized variational Euler–Ostrogradsky equation in the Sobolev space has additional analytic properties.

Downloads

References

Tonelli L. Fondamenti di Calcolo delle Variazioni. Bologna: Zanichelli, 1921–1923.

Dacorogna B. Introduction to the calculus of variations. London: Imperial College Press, 2004. https://doi.org/10.1142/p361

Galeev E. M., Zelikin M. I., Konyagin S. V. et al. Optimal control. Osmolovskiy N. P., Tikhomirov V. M. (Eds.). Moscow: MTsNMO, 2008 (in Russian).

Giaquinta M., Hildebrandt S. Calculus of variations I. New York: Springer, 1996.

Giusti E. Direct methods in the calculus of variations. Singapore: World Scientific, 2003. https://doi.org/10.1142/5002

Klötzler R. Mehrdimensionale Variationsrechnung. Boston: Birkhauser, 1980.

Bozhonok E. V. Some existence conditions of compact extrema for variational functionals of several variables in Sobolev space H 1. In: Operator Theory: Advances and Applications, Vol. 90. Basel: Birkhäuser, 2009: 141–155. https://doi.org/10.1007/978-3-7643-9919-1_8

Orlov I. V. Compact extrema: general theory and its applications to the variational functionals. In: Operator Theory: Advances and Applications, Vol. 190. Basel: Birkhäuser, 2009: 397–417. https://doi.org/10.1007/978-3-7643-9919-1_25

Orlov I. V., Bozhonok E. V. Additional chapters of modern natural science. Variational calculus in the Sobolev space H 1: Textbook. Simferopol: DIAIPI, 2010 (in Russian).

Kuzmenko E. M. Uch. zap. Tavrich. nats. un-ta im. V. I. Vernadskogo. Ser. Fiziko.-mat. nauki, 2011, 24(63), No. 1: 76–89 (in Russian).

Kuzmenko E. M. Uch. zap. Tavrich. nats. un-ta im. V. I. Vernadskogo. Ser. Fiziko.-mat. nauki, 2011, 24(63), No. 3: 39–60 (in Russian).

Schmeisser H.-J., Triebel H. Topics in Fourier analysis and function spaces. Chichester: Wiley, 1987.

Gelfand I. M., Fomin S. V. The calculus of variations. Moscow: Fizmatgiz, 1961 (in Russian).

Bozhonok E. V. Meth. Funct. Anal. and Topol., 2007, 123, No. 3: 262–266.

Published

17.02.2025

How to Cite

Orlov, I., Bozhonok, E., & Kuzmenko, E. (2025). Necessary conditions for the K-extremum of a variational functional in Sobolev spaces over multi-dimensional domains . Reports of the National Academy of Sciences of Ukraine, (4), 19–24. https://doi.org/10.15407/dopovidi2014.04.019