A Liouville comparison principle for solutions to semilinear parabolic second-order partial differential inequalities in the whole space

Authors

  • V.V. Kurta

DOI:

https://doi.org/10.15407/dopovidi2014.03.036

Keywords:

Liouville comparison principle, second-order partial inequalities, space

Abstract

We obtain a new Liouville comparison principle for weak solutions (u,v) to semilinear parabolic second-order partial differential inequalities of the form

mceclip1-a261e4e3ca484d732246c2b12822ed3c.png

Downloads

References

Kurta V. V. Asymptotic Analysis., 2013, 83: 83–99.

Fujita H. J. Fac. Sci. Univ. Tokyo, Sect. I., 1966, 13: 109–124.

Hayakawa K. Proc. Japan Acad., 1973, 49: 503–505. https://doi.org/10.3792/pja/1195519254

Kobayashi K., Sirao T., Tanaka H. J. Math. Soc. Japan, 1977, 29, No. 3: 407–424. https://doi.org/10.2969/jmsj/02930407

Bidaut-Véron M.-F. Initial blow-up for the solutions of a semilinear parabolic equation with source term. In: Équations aux Dérivées Partielles et Applications. Paris: Gauthier-Villars, 1998: 189–198.

Poláčik P., Quittner P., Souplet Ph. Indiana Univ. Math. J., 2007, 56, No. 2: 879–908. https://doi.org/10.1512/iumj.2007.56.2911

Oleinik O. A., Radkevich E. V. Second order equations with nonnegative characteristic form. New York: Plenum Press, 1973. https://doi.org/10.1007/978-1-4684-8965-1

Landis E. M. Second order equations of elliptic and parabolic type. Providence, RI: Amer. Math. Soc., 1998.

Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P. Blow-up in quasi-linear parabolic equations. Berlin: Walter de Gruyter, 1995. https://doi.org/10.1515/9783110889864

Downloads

Published

11.02.2025

How to Cite

Kurta, V. (2025). A Liouville comparison principle for solutions to semilinear parabolic second-order partial differential inequalities in the whole space . Reports of the National Academy of Sciences of Ukraine, (3), 36–42. https://doi.org/10.15407/dopovidi2014.03.036