Existence of global attractors for impulsive dynamical systems

Authors

  • O. V. Kapustyan
  • O. V. Kapustyan
  • M. O. Perestyuk

DOI:

https://doi.org/10.15407/dopovidi2015.12.013

Keywords:

global attractor, impulsive dynamical system, impulsive perturbation

Abstract

The existence of global attractors for impulsive dynamical systems, which have trajectories with infinite number of impulsive perturbations, is investigated. We have proved the existence of a global attractor for a parabolic equation with nonlinear perturbation.

Downloads

References

Samoilenko A. M., Perestyuk N. A. Differential equations with impulsive influence, Kyiv: Vyshcha Shkola, 1987 (in Russian).

Samoilenko A. M., Perestyuk N. A. Impulsive differential equations, Singapore: World Scientific, 1995. https://doi.org/10.1142/2892

Pavlidis T. Information and control, 1996, 9: 298–322. https://doi.org/10.1016/S0019-9958(66)90183-5

Rozhko V. F. Differential Equations, 1975, 11, No 6: 1005–1012 (in Russian).

Kaul S. K. J. Appl. Math. Stoch. Anal., 1994, 7, No 4: 509–523. https://doi.org/10.1155/S1048953394000390

Bonotto E. M., Demuner D. P. Bull. Sci. Math., 2013, 137: 617–642. https://doi.org/10.1016/j.bulsci.2012.12.005

Kapustyan A. V., Perestyuk N. A. Ukr. Math. J., 2003, 55, No 8: 1283–1294. https://doi.org/10.1023/B:UKMA.0000010759.30810.77

Iovane G., Kapustyan O. V., Valero J. Nonlinear Analysis, 2008, 68: 2516–2530. https://doi.org/10.1016/j.na.2007.02.002

Perestyuk M., Kapustyan O. Mem. Differential Equations Math. Phys., 2012, 56: 89–113.

Kapustyan O. V., Kasyanov P. O., Valero J., Zgurovsky M. Z. Continuous and distributed systems, 2014, 211: 163–180.

Published

10.02.2025

How to Cite

Kapustyan, O. V., Kapustyan, O. V., & Perestyuk, M. O. (2025). Existence of global attractors for impulsive dynamical systems . Reports of the National Academy of Sciences of Ukraine, (12), 13–18. https://doi.org/10.15407/dopovidi2015.12.013