Existence of global attractors for impulsive dynamical systems
DOI:
https://doi.org/10.15407/dopovidi2015.12.013Keywords:
global attractor, impulsive dynamical system, impulsive perturbationAbstract
The existence of global attractors for impulsive dynamical systems, which have trajectories with infinite number of impulsive perturbations, is investigated. We have proved the existence of a global attractor for a parabolic equation with nonlinear perturbation.
Downloads
References
Samoilenko A. M., Perestyuk N. A. Differential equations with impulsive influence, Kyiv: Vyshcha Shkola, 1987 (in Russian).
Samoilenko A. M., Perestyuk N. A. Impulsive differential equations, Singapore: World Scientific, 1995. https://doi.org/10.1142/2892
Pavlidis T. Information and control, 1996, 9: 298–322. https://doi.org/10.1016/S0019-9958(66)90183-5
Rozhko V. F. Differential Equations, 1975, 11, No 6: 1005–1012 (in Russian).
Kaul S. K. J. Appl. Math. Stoch. Anal., 1994, 7, No 4: 509–523. https://doi.org/10.1155/S1048953394000390
Bonotto E. M., Demuner D. P. Bull. Sci. Math., 2013, 137: 617–642. https://doi.org/10.1016/j.bulsci.2012.12.005
Kapustyan A. V., Perestyuk N. A. Ukr. Math. J., 2003, 55, No 8: 1283–1294. https://doi.org/10.1023/B:UKMA.0000010759.30810.77
Iovane G., Kapustyan O. V., Valero J. Nonlinear Analysis, 2008, 68: 2516–2530. https://doi.org/10.1016/j.na.2007.02.002
Perestyuk M., Kapustyan O. Mem. Differential Equations Math. Phys., 2012, 56: 89–113.
Kapustyan O. V., Kasyanov P. O., Valero J., Zgurovsky M. Z. Continuous and distributed systems, 2014, 211: 163–180.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.