A homogenized model of small oscillations of an elastic system of masses with nonlocal interaction
DOI:
https://doi.org/10.15407/dopovidi2015.10.012Keywords:
a homogenized system of equations, small motions of a system of mass, the nonlocal elastic theoryAbstract
The problem of small motions of a system of mass points with nonlocal interaction is considered. We study the asymptotic behavior of the problem, when the distances between the nearest particles and the interaction force tend to zero. We obtain a homogenized system of equations, which can be considered as a natural model of the nonlocal elastic theory.
Downloads
References
Polizzotto P. Int. J. Solids Struct., 2001, 38: 7359–7380. https://doi.org/10.1016/S0020-7683(01)00039-7
Han F., Lubineau G. Int. J. Numer. Meth. Engng., 2012, 89, Iss. 6: 671–685, DOI:10.1002/nme.3255. https://doi.org/10.1002/nme.3255
Silling S. A. J. Mech. Phys. Solids., 2000, 48: 175–209. https://doi.org/10.1016/S0022-5096(99)00029-0
Kroner E. Int. J. Solids Struct., 1967, 3: 731–742. https://doi.org/10.1016/0020-7683(67)90049-2
Di Paola M., Failla G., Zingales M. Int. J. Solids Struct., 2010, 47: 2347–2358. https://doi.org/10.1016/j.ijsolstr.2010.02.022
Berezhnyy M., Berlyand L. J. Mech. Phys. Solids., 2006, 54: 635–669. https://doi.org/10.1016/j.jmps.2005.09.006
Marchenko V. A., Khruslov E.Ya. Homogenization of Partial Differential Equations, Boston: Birkhäuser, 2006, MR 2182441.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.