A homogenized model of small oscillations of an elastic system of masses with nonlocal interaction

Authors

  • M. Berezhnyi
  • N. K. Radyakin
  • E.Ya. Khruslov

DOI:

https://doi.org/10.15407/dopovidi2015.10.012

Keywords:

a homogenized system of equations, small motions of a system of mass, the nonlocal elastic theory

Abstract

The problem of small motions of a system of mass points with nonlocal interaction is considered. We study the asymptotic behavior of the problem, when the distances between the nearest particles and the interaction force tend to zero. We obtain a homogenized system of equations, which can be considered as a natural model of the nonlocal elastic theory.

Downloads

References

Polizzotto P. Int. J. Solids Struct., 2001, 38: 7359–7380. https://doi.org/10.1016/S0020-7683(01)00039-7

Han F., Lubineau G. Int. J. Numer. Meth. Engng., 2012, 89, Iss. 6: 671–685, DOI:10.1002/nme.3255. https://doi.org/10.1002/nme.3255

Silling S. A. J. Mech. Phys. Solids., 2000, 48: 175–209. https://doi.org/10.1016/S0022-5096(99)00029-0

Kroner E. Int. J. Solids Struct., 1967, 3: 731–742. https://doi.org/10.1016/0020-7683(67)90049-2

Di Paola M., Failla G., Zingales M. Int. J. Solids Struct., 2010, 47: 2347–2358. https://doi.org/10.1016/j.ijsolstr.2010.02.022

Berezhnyy M., Berlyand L. J. Mech. Phys. Solids., 2006, 54: 635–669. https://doi.org/10.1016/j.jmps.2005.09.006

Marchenko V. A., Khruslov E.Ya. Homogenization of Partial Differential Equations, Boston: Birkhäuser, 2006, MR 2182441.

Published

08.02.2025

How to Cite

Berezhnyi, M., Radyakin, N. K., & Khruslov, E. (2025). A homogenized model of small oscillations of an elastic system of masses with nonlocal interaction . Reports of the National Academy of Sciences of Ukraine, (10), 12–16. https://doi.org/10.15407/dopovidi2015.10.012