The Schur–Weyl duality for the unitary group of a II1-factor

Authors

  • N. I. Nessonov

DOI:

https://doi.org/10.15407/dopovidi2015.09.007

Keywords:

Schur–Weyl duality, unitary group of a factor, Young diagram

Abstract

We obtain an analogue of the Schur–Weyl duality for the unitary group of an arbitrary II1-factor.

Downloads

References

Weyl H. The classical groups. Their invariants and representations, Princeton, N. J.: Princeton Univ. Press, 1997.

Ol'shanskii G. I. Leningr. Math. J., 1990, 1, Iss. 4: 983–1014.

Tsilevich N. V., Vershik A. M. Commun. Math. Phys., 2014, 327: 873–885. https://doi.org/10.1007/s00220-013-1876-x

Kirillov A. A. Soviet Math., Dokl., 1973, 14; 1355–1358.

Penkov I., Styrkas K. Developments and Trends in Infinite-Dimensional Lie Theory, Boston: Birkhäuser, 2011: 127–150. https://doi.org/10.1007/978-0-8176-4741-4_4

Takesaki M. Theory of Operator Algebras, Vol. I, Berlin; Heidelberg: Springer, 2002.

Takesaki M. Theory of Operator Algebras, Vol. III, Berlin; Heidelberg: Springer, 2003. https://doi.org/10.1007/978-3-662-10451-4

Published

06.02.2025

How to Cite

Nessonov, N. I. (2025). The Schur–Weyl duality for the unitary group of a II1-factor . Reports of the National Academy of Sciences of Ukraine, (9), 7–12. https://doi.org/10.15407/dopovidi2015.09.007