The Schur–Weyl duality for the unitary group of a II1-factor
DOI:
https://doi.org/10.15407/dopovidi2015.09.007Keywords:
Schur–Weyl duality, unitary group of a factor, Young diagramAbstract
We obtain an analogue of the Schur–Weyl duality for the unitary group of an arbitrary II1-factor.
Downloads
References
Weyl H. The classical groups. Their invariants and representations, Princeton, N. J.: Princeton Univ. Press, 1997.
Ol'shanskii G. I. Leningr. Math. J., 1990, 1, Iss. 4: 983–1014.
Tsilevich N. V., Vershik A. M. Commun. Math. Phys., 2014, 327: 873–885. https://doi.org/10.1007/s00220-013-1876-x
Kirillov A. A. Soviet Math., Dokl., 1973, 14; 1355–1358.
Penkov I., Styrkas K. Developments and Trends in Infinite-Dimensional Lie Theory, Boston: Birkhäuser, 2011: 127–150. https://doi.org/10.1007/978-0-8176-4741-4_4
Takesaki M. Theory of Operator Algebras, Vol. I, Berlin; Heidelberg: Springer, 2002.
Takesaki M. Theory of Operator Algebras, Vol. III, Berlin; Heidelberg: Springer, 2003. https://doi.org/10.1007/978-3-662-10451-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.