Nanostructurization of Si and GaAs by acoustic cavitation in liquid nitrogen

Authors

  • R.K. Savkina
  • A.B. Smirnov

DOI:

https://doi.org/10.15407/dopovidi2015.07.070

Keywords:

II–V semiconductors, micro- and nanoscale pattern formation, photovoltaics, silicon, ultrasonic cavitation

Abstract

The properties of the Si and GaAs samples subjected to cavitation impacts have been studied. It is shown that the high-intensity (15 W/cm2) high-frequency (1÷6 MHz) sonication in liquid nitrogen induces changes of the physical, chemical, and structural properties of the semiconductor surface. The optic and atomic force microscopy techniques, as well as energy dispersive X-ray spectroscopy and photoresponse spectroscopy, are used. The experimental study demonstrates the nanostructure formation and a change of the chemical composition at the semiconductor surface. It is found that a significant rise in the value and the expansion of a spectral range of photosensitivity take place after the cavitation treatment.

Downloads

References

Xu H., Zeiger B.W., Suslick K. S. Chem. Soc. Rev., 2013, 42: 2555–2567. https://doi.org/10.1039/C2CS35282F

Rosenberg L.D. (Ed.), High-intensity ultrasonic fields, New York: Plenum Press, 1971.

Miller D. L. Progress in biophysics and molecular biology, 2007, 93, No 1: 314–330. https://doi.org/10.1016/j.pbiomolbio.2006.07.027

Chemat F., Huma Z.-E., Khan M.K. Ultrasonics Sonochemistry, 2011, 18, No 4: 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023

Kanegsberg B., Kanegsberg E. (Ed.), Critical cleaning process applications management safety and environmental concerns, Boca Raton: CRC Press, 2011.

Savkina R.K. Recent Patents on Electrical & Electronic Engineering, 2013, 6, No 3: 157–172. https://doi.org/10.2174/22131116113066660008

Arata Y., Zhang Y.-Ch. Appl. Phys. Lett., 2002, 80, No 13: 2416–2418. https://doi.org/10.1063/1.1465110

Nomura S., Toyota H. Appl. Phys. Lett., 2003, 83, No 22: 4503–4505. https://doi.org/10.1063/1.1631062

Khachatryan A.Kh., Aloyan S.G., May P.W., Sargsyan R., Khachatryan V.A., Baghdasaryan V. S. Diamond & Related Materials, 2008, 17: 931–936. https://doi.org/10.1016/j.diamond.2008.01.112

Savkina R.K., Smirnov A.B. J. Phys. D: Appl. Phys., 2010, 43: 425301. https://doi.org/10.1088/0022-3727/43/42/425301

Savkina R.K. Funct. Materials, 2012, 19, No 1: 38–43.

Savkina R.K., Smirnov A. B. Tech. Phys. Lett., 2015, 41, No 2: 164–167. https://doi.org/10.1134/S1063785015020248

Savkina R.K., Smirnov A.B., Kryshtab T., Kryvko A. Materials Science in Semiconductor Processing, 2015, 37: 179–184. https://doi.org/10.1016/j.mssp.2015.02.066

Tisch U., Finkman E., Salzman J. Appl. Phys. Lett., 2002, 81: 463–465. https://doi.org/10.1063/1.1494469

Published

05.02.2025

How to Cite

Savkina, R., & Smirnov, A. (2025). Nanostructurization of Si and GaAs by acoustic cavitation in liquid nitrogen . Reports of the National Academy of Sciences of Ukraine, (7), 70–78. https://doi.org/10.15407/dopovidi2015.07.070