Estimates of the best orthogonal trigonometric approximations of the classes of convolutions of periodic functions of not high smoothness
DOI:
https://doi.org/10.15407/dopovidi2015.07.013Keywords:
best orthogonal trigonometric approximations, classes of (ψ; β)- differentiable functions, classes of convolutionsAbstract
We obtain order estimates for the best uniform orthogonal trigonometric approximations of 2π-periodic functions, whose (ψ,β)-derivatives belong to unit balls of spaces Lp, 1≤p<∞, in the case where a consequence ψ(k) is such that the product ψ(n)n1/p can tend to zero slower than any power function, and ∑k=1∞ψp′(k)kp′−2<∞, when 1<p<∞, 1/p+1/p′=1 or ∑k=1∞ψ(k)<∞, when p=1. We establish the analogous estimates in theLp′ -metric for the classes of summable (ψ,β)-differentiable functions such that ∥fψβ∥1≤1.
Downloads
References
Stepanets A. I. Methods of approximation theory. I, Pratsi Instytutu Matematyky NAN Ukrainy. Matematyka ta ii Zastosuvannya, Vol. 40, Kyiv: Instytut Matematyky NAN Ukrainy, 2002 (in Russian).
Zygmund A. Trigonometric Series, Vol. 2, Moscow: Mir, 1965 (in Russian).
Korneichuk N.P. Exact constants in approximation theory, Moscow: Nauka, 1987 (in Russian).
Belinsky E. S. Approximation by a "floating" system of exponents on the classes of periodic functions with bounded mixed derivative, Issled. po teorii func. mnog. vesch. perem., Jaroslavl': Jaroslav. un–t, 1988: 16–33 (in Russian).
Romanyuk A. S. Math. Notes, 2002, 71, No 1: 98–109. https://doi.org/10.1023/A:1013982425195
Romanyuk A. S. Math. Notes, 2007, 82, No 2: 216–228. https://doi.org/10.1134/S0001434607070279
Romanyuk A.S. Approximation characteristics of classes of periodic functions of several variables, Pratsi Instytutu Matematyky NAN Ukrainy. Matematyka ta ii Zastosuvannya, Vol. 93, Kyiv: InstytutMatematyky NAN Ukrainy, 2012 (in Russian).
Shkapa V.V. Zb. Pr. Instytutu Matematyky NAN Ukrainy, 2014, 11, No 3: 315–329 (in Ukrainian).
Shkapa V.V. Zb. Pr. Instytutu Matematyky NAN Ukrainy, 2014, 11, No 2: 305–317 (in Ukrainian).
Fedorenko A. S. Ukr. Math. J., 1999, 51, No 12: 1945–1949. https://doi.org/10.1007/BF02525137
Fedorenko O. S. Approximation of (ψ, β)-differentiable functions by trigonometric polynomials: Autoref. diss. . . . cand. phys.-math. sciences, Kyiv: Insitute of Mathematics of NAS of Ukraine, 2001 (in Ukrainian).
Hrabova U. Z., Serdyuk A. S. Ukr. Mat. J., 2013, 65, No 9: 1319–1331. https://doi.org/10.1007/s11253-014-0861-7
Serdyuk A. S., Stepaniuk T.A. Ukr. Math. J., 2014, 66, No 12: 1658–1675 (in Ukrainian).
Stepanyuk T.A. Zb. Pr. Instytutu Matematyky NAN Ukrainy, 2014, 11, No 3: 241–269 (in Ukrainian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.