Estimates of the best orthogonal trigonometric approximations of the classes of convolutions of periodic functions of not high smoothness

Authors

  • А. S. Serdyuk
  • Т.А. Stepaniuk

DOI:

https://doi.org/10.15407/dopovidi2015.07.013

Keywords:

best orthogonal trigonometric approximations, classes of (ψ; β)- differentiable functions, classes of convolutions

Abstract

We obtain order estimates for the best uniform orthogonal trigonometric approximations of 2π-periodic functions, whose (ψ,β)-derivatives belong to unit balls of spaces Lp, 1≤p<∞, in the case where a consequence ψ(k) is such that the product ψ(n)n1/p can tend to zero slower than any power function, and ∑k=1∞ψp′(k)kp′−2<∞, when 1<p<∞, 1/p+1/p′=1 or ∑k=1∞ψ(k)<∞, when p=1. We establish the analogous estimates in theLp′ -metric for the classes of summable (ψ,β)-differentiable functions such that ∥fψβ∥1≤1.

Downloads

References

Stepanets A. I. Methods of approximation theory. I, Pratsi Instytutu Matematyky NAN Ukrainy. Matematyka ta ii Zastosuvannya, Vol. 40, Kyiv: Instytut Matematyky NAN Ukrainy, 2002 (in Russian).

Zygmund A. Trigonometric Series, Vol. 2, Moscow: Mir, 1965 (in Russian).

Korneichuk N.P. Exact constants in approximation theory, Moscow: Nauka, 1987 (in Russian).

Belinsky E. S. Approximation by a "floating" system of exponents on the classes of periodic functions with bounded mixed derivative, Issled. po teorii func. mnog. vesch. perem., Jaroslavl': Jaroslav. un–t, 1988: 16–33 (in Russian).

Romanyuk A. S. Math. Notes, 2002, 71, No 1: 98–109. https://doi.org/10.1023/A:1013982425195

Romanyuk A. S. Math. Notes, 2007, 82, No 2: 216–228. https://doi.org/10.1134/S0001434607070279

Romanyuk A.S. Approximation characteristics of classes of periodic functions of several variables, Pratsi Instytutu Matematyky NAN Ukrainy. Matematyka ta ii Zastosuvannya, Vol. 93, Kyiv: InstytutMatematyky NAN Ukrainy, 2012 (in Russian).

Shkapa V.V. Zb. Pr. Instytutu Matematyky NAN Ukrainy, 2014, 11, No 3: 315–329 (in Ukrainian).

Shkapa V.V. Zb. Pr. Instytutu Matematyky NAN Ukrainy, 2014, 11, No 2: 305–317 (in Ukrainian).

Fedorenko A. S. Ukr. Math. J., 1999, 51, No 12: 1945–1949. https://doi.org/10.1007/BF02525137

Fedorenko O. S. Approximation of (ψ, β)-differentiable functions by trigonometric polynomials: Autoref. diss. . . . cand. phys.-math. sciences, Kyiv: Insitute of Mathematics of NAS of Ukraine, 2001 (in Ukrainian).

Hrabova U. Z., Serdyuk A. S. Ukr. Mat. J., 2013, 65, No 9: 1319–1331. https://doi.org/10.1007/s11253-014-0861-7

Serdyuk A. S., Stepaniuk T.A. Ukr. Math. J., 2014, 66, No 12: 1658–1675 (in Ukrainian).

Stepanyuk T.A. Zb. Pr. Instytutu Matematyky NAN Ukrainy, 2014, 11, No 3: 241–269 (in Ukrainian).

Published

05.02.2025

How to Cite

Serdyuk А. S., & Stepaniuk Т. (2025). Estimates of the best orthogonal trigonometric approximations of the classes of convolutions of periodic functions of not high smoothness . Reports of the National Academy of Sciences of Ukraine, (7), 13–19. https://doi.org/10.15407/dopovidi2015.07.013