The Dirichlet–Neumann problem for linear nonelliptic partial differential equations with constant coefficients

Authors

  • B.Yo. Ptashnyk
  • S.M. Repetylo

DOI:

https://doi.org/10.15407/dopovidi2015.02.024

Keywords:

constant coefficients, Dirichlet–Neumann problem, linear nonelliptic partial differential equation

Abstract

In the domain, which is the Cartesian product of a segment and a multidimensional torus, we study the boundary value-problem with Dirichlet-Neumann conditions with respect to the selected variable and conditions of periodicity with respect to other coordinates for general (regardless of type) linear partial differential equations of a high order with constant coefficients, isotropic in the order of differentiation with respect to independent variables. We establish conditions for the unique solvability of the problem and structurally built the solution in the form of a series in a system of orthogonal functions. To estimate the small denominators arising in the construction of a solution to the problem from below, we use the metric approach.

Downloads

Download data is not yet available.

References

Bilusiak N. I., Komarnytska L. I., Ptashnyk B. Y. Ukr. mat. zhurn., 2002, 54, No 12: 1592–1602 (in Ukrainian).

Bobyk I. O., Symotiuk M. M. Visn. Nac. Univ. “Lvivska politekhnika”. Fiz.-mat. nauky, 2010, Iss. 687: 11–19 (in Ukrainian).

Symotiuk M. M. Mat. visnyk NTS, 2005, 2: 199–212 (in Ukrainian).

Ptashnyk B.I. Incorrect boundary value problems for differential equations with partial derivatives, Kiev: Nauk. Dumka, 1984 (in Russian).

Ptashnyk B. Y, Repetylo S. M. Mat. metody ta fiz.-mekh. polia, 2013, 56, No 3: 15–28 (in Ukrainian).

Pavlenko V. N., Petrash T. A. Tr. Int. mathematiki i mekhaniki UrO RAN, 2012, 18, No 2: 199–204 (in Russian).

Gentile G., Mastropietro V., Procesi M. Commun. Math. Phys., 2005, 256, No 2: 437–490. DOI: https://doi.org/10.1007/s00220-004-1255-8

Rudakov I. A. Russian Math., 2007: 51, No 2: 44–52. DOI: https://doi.org/10.3103/S1066369X07020065

Korzyuk V. I., Konopel'ko O. A. Different. Equat., 2010, 46, No 5: 690–701. DOI: https://doi.org/10.1134/S0012266110050083

Zikirov O. S. Math. Modelling and Analysis., 2009, 47, No 3: 407–421. DOI: https://doi.org/10.3846/1392-6292.2009.14.407-421

Gorbachuk V. I., Gorbachuk M. L. Boundary value problems for operator-differential equations, Kiev: Nauk. Dumka, 1984 (in Russian).

Faddeev D. K., Sominskii I. S. Collection of problems on higher algebra. Moscow: Nauka, 1972 (in Russian).

Naimark M. A. Linear differential operators, Moscow: Nauka, 1969 (in Russian).

Sprindzhuk V. G. Metrical theory of the Diophantine approximations, Moscow: Nauka, 1977 (in Russian).

Groshev A. V. Dokl. AN SSSR, 1938, 19, No 3: 151–152 (in Russian).

Published

08.01.2025

How to Cite

Ptashnyk, B., & Repetylo, S. (2025). The Dirichlet–Neumann problem for linear nonelliptic partial differential equations with constant coefficients . Reports of the National Academy of Sciences of Ukraine, (2), 24–31. https://doi.org/10.15407/dopovidi2015.02.024