Nature of the chemical bond from the point of view of the degree of overlapping of electron shells for ions, atoms, and molecules
DOI:
https://doi.org/10.15407/dopovidi2016.12.036Keywords:
density of the interaction energy per unit interval, hydrogen bonds, overlapping degree for electron shells, physical criterion for covalent and ionic bondsAbstract
A physical criterion for covalent, ionis, and hydrogen bonds is constructed. The overlapping degree Δ for electron shells in compounds and complexes with covalent and ionic bonds is analyzed. It is shown that the density eΔ of the interaction energy per unit interval for ionic compounds is approximately more by the order of magnitude in comparison with that for covalent ones. This means that eΔ can serve as an adequate criterion for the description of the bond type. Analyzing the water dimer properties, it is shown that the value of eΔ for them takes the same order of magnitude as for halogenides of alkaline metals. At the same time, the overlapping degree for electron shells of water molecules forming a dimer in rarefied water vapor, Δ = 0.01, is close to that for an artificial instable molecule Ne2. These facts testify to the electrostatic character of the intermolecular interaction between water molecules belonging to a dimer with the main contribution given by the dipole-dipole forces.
Downloads
References
Zhyganiuk I.V., Malomuzh M.P. Ukr. J. Phys. 2015, 60, No 9: 960-974 (in Ukrainian). doi: https://doi.org/10.15407/ujpe60.09.0960
Antonchenko V.Ya., Davydov A.S., Il'in V.V. Fundamentals of Physics of Water, Kiev: Naukova Dumka, 1991 (in Russian).
Poltev V.I., Grokhlina T.A., Malenkov G.G. J. Biomolec. Struct. Dynam., 1984, 2, No 2: 413-429. doi: https://doi.org/10.1080/07391102.1984.10507576, PMid:6400943
Arunan E., Desiraju G.R., Klein R.A., Sadlej J., Scheiner S., Alkorta I., Clary D.C., Crabtree R.H., Dannenberg J.J., Hobza P., Kjaergaard H.G., Legon A.C., Mennucci B., Nesbitt D. J. Pure Appl. Chem., 2011, 83, No 8: 1619-1636. doi: https://doi.org/10.1351/PAC-REP-10-01-01
Arunan E., Desiraju G.R., Klein R.A., Sadlej J., Scheiner S., Alkorta I., Clary D.C., Crabtree R.H., Dannenberg J. J., Hobza P., Kjaergaard H.G., Legon A.C., Mennucci B., Nesbitt D. J. Pure Appl. Chem., 2011, 83, No 8: 1637-1641. doi: https://doi.org/10.1351/PAC-REC-10-01-02
Fulton R.L., Perhacs P. J. Phys. Chem. A., 1998, 102, No 45: 9001-9020. doi: https://doi.org/10.1021/jp9821228
Dolgushin M.D., Pinchuk V.M. Theoret. Chim. Acta, 1977, 45, No 3: 157-165. doi: https://doi.org/10.1007/BF02401396
Lide D.R., Haynes W.M. CRC handbook of chemistry and physics, Boca Raton, Fl: CRC, 2009. PMid:19903860
Makhlaichuk P.V., Malomuzh M.P., Zhyganiuk I.V. Ukr. J. Phys., 2013, 58, No 3: 278-288. doi: https://doi.org/10.15407/ujpe58.03.0278
Coulson C.A. Valence, London: Oxford Univ. Press, 1961. PMCid:PMC1205691
Haaland A. Molecules and Models : The molecular structures of main group element compounds, Oxford: Oxford University Press, 2008. doi: https://doi.org/10.1093/acprof:oso/9780199235353.001.0001
House J.E. Inorganic chemistry, San Diego: Academic Press, 2012.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.