Continuity in a parameter of solutions to linear boundary-value problems in Hölder–Zygmund spaces
DOI:
https://doi.org/10.15407/dopovidi2016.10.015Keywords:
boundary-value problem, continuity in a parameter, Hölder–Zygmund space, system of differential equationsAbstract
We introduce and investigate the broadest class of linear boundary-value problems for the systems of first-order ordinary differential equations, whose solutions belong to the complex Hölder–Zygmund space. For these problems, we establish a constructive criterion, under which their solutions are continuous in a parameter in this space.
Downloads
References
Gikhman I.I. Ukr. Mat. Zh., 1952, 4, No 2: 215-219 (in Russian).
Krasnosel'skii M.A., Krein S.G. Uspekhi Mat. Nauk, 1955, 10, No 3: 147-153 (in Russian).
Kurzweil J., Vorel Z. Czechoslovak Math. J., 1957, 7, No 4: 568-583 (in Russian).
Samoilenko A.M. Ukr. Mat. Zh., 1962, 14, No 3: 289—298 (in Russian). https://doi.org/10.1007/BF02526637
Kiguradze I.T. Some singular boundary-value problems for ordinary differential equations, Tbilisi: Izd-vo Tbilisi University, 1975 (in Russian).
Kiguradze I.T. J. Soviet Math., 1988, 43, Iss. 2: 2259-2339. https://doi.org/10.1007/BF01100360
Ashordia M. Czechoslovak Math. J., 1996, 46, No 3: 385—404.
Mikhailets V.A., Reva N.V. Dopov. Nac. acad. nauk Ukr. 2008, No 9: 23-27 (in Russian).
Kodlyuk T.I., Mikhailets V.A., Reva N.V. Ukr. Math. J., 2013, 65, No 1: 77-90. https://doi.org/10.1007/s11253-013-0766-x
Mikhailets V.A., Chekhanova G.A. J. Math. Sci., 2015, 204, No 3: 333-342. https://doi.org/10.1007/s10958-014-2205-4
Mikhailets V.A., Reva N.V. Dopov. Nac. akad. nauk Ukr. 2008, No 8: 28-30 (in Russian).
Kodlyuk T.I., Mikhailets V.A. J. Math. Sci., 2013, 190, No 4: 589-599. https://doi.org/10.1007/s10958-013-1272-2
Gnyp E.V., Kodlyuk T.I., Mikhailets V.A. Ukr. Math. J., 2015, 67, No 5: 658-667. https://doi.org/10.1007/s11253-015-1105-1
Mikhailets V.A., Chekhanova G.A. Dopov. Nac. akad. nauk Ukr. 2014, No 7: 24-28 (in Russian).
Triebel H. Interpolation theory, function spaces, differential operators, 2-nd ed., Heidelberg: Johann Ambrosius Barth, 1995.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.